
Java and Eclipse for Beginner
Part II of III

Session: 1182

Presented by

Theresa Tai
IBM System z New Technology Center
Poughkeepsie, NY
ttai@us.ibm.com



Agenda

 Exceptions and Exception Handling
Exercise 1, Exception Handling and I/O

 Array List
 Exercise 2, extending the CommandLine exercise

 Supplementary Materials
 JNI (Java Native Interface)
Calling Java from C
Calling C from Java

 Remote Debugging

 The Java (Class) API
The Collection API



Exceptions and Exception
Handling

Exceptions in Java are any abnormal, unexpected
events or extraordinary conditions that may occur at
runtime

On such conditions java throws an exception object

Exception handling involves catching the exception and
taking the necessary actions



Exception Handling Syntax

 Throwing an exception

throw (exception);

 and catching it
try {

// code that can throw Exceptions
}

catch (...) { }

catch (...) { }

finally {

// tidy up code...
}



Exception Types 1

Checked Exceptions are Exceptions which must be
handled programmatically.

Methods declare the exceptions that they can throw and
the calling method must catch this exception.

public void foo() throws <Exception Type> {

}



Exception Types 2

Unchecked Exceptions are Exceptions which the compiler
doesn’t insist are handled.

Unchecked exceptions don’t need to be declared in a method’s
throw clause.

Unchecked exceptions represent runtime problems which code
cannot reasonably be expected to recover from.

Examples of unchecked exceptions are:
ArithmeticException
ArrayStoreException
IndexOutOfBoundsException
NegativeArraySizeException
NullPointerException



Catching Exceptions



… and not Catching Exceptions



Exercise 1

The FilePrinter.java program reads the files passed as
arguments

The file handling methods throw checked Expections
which will need to be handled

Use a finally block to clean up any resources that the
application may have



ArrayList

Example of creating an ArrayList

List myList = new ArrayList();

Example List methods
http://java.sun.com/j2se/1.5.0/docs/api/java/util/ArrayList.html

add(Object element)

get(int index)

contains(Object element)

indexOf(Object element)

size()



ArrayList example

import java.util.*;

public class ArrayListExample1 {

public static void main(String[] args) {

List theChildren = new ArrayList();

theChildren.add("Jon");
theChildren.add("Jane");

System.out.println("number of children: " + theChildren.size());
System.out.println("First item: " + theChildren.get(0));
System.out.println("Second item: " + theChildren.get(1));

}
}



Problems with collections so far

 In Java 1.4.2 (and before) List entries are of class Object
which means that there is no compile time check for
what is added to a Collection

 Type checking was the responsibility of the programmer.

 Not very nice …

1. Prone to mistakes

2. Casting produces ugly code



Problems with collections so far

Collections as described so far worked without compile
warnings Java 1.4.2 but not for Java 5

Against theArguments.add(i); in Java 5 (and later
releases) is the warning:

Type safety: The method add(object) belongs to the raw
type List. References to Generic type List<E> should be
parameterised.

• You’ll probably encounter these warnings in the next
Exercise



Java 5 and Generics

 Java 5 introduces Generics

http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf

// Before Java 5 ArrayLists entries are Objects

List theArguments = new ArrayList();

// In Java 5 it is possible to define the class of entries eg String
List <String> theArguments = new ArrayList <String> ();



Exercise 2

Modify the CommandLine program to store the
arguments in a ArrayList

Query this array list to see if it contains a specific value



Supplementary Materials



Java Native Interface (JNI)

http://java.sun.com/j2se/1.5.0/docs/guide/jni/

• Call Java code from native code

• Call native code (C, Cobol, Fortran, assembler,
…) from Java. This may be needed where :
The Java class library doesn’t support platform-dependent

features

The code required already exists and was written in a different
language

Requirements demand a bespoke implementation in assembly
for example



Call Java code from native code

• JNI code from the Java launcher



Call native code from java code



The Java Application



The <native>.h file



The native method implementation



The build script



Run the application …



Remote debugging

 In this exercise an application running on a z/OS box will
be debugged from Eclipse running on a windows box

 The application consists of a loop which allocates a chunk
of storage and writes a message to stdout, to confirm that
the application is running on z/OS, on each iteration

 The exercise consists of 2 parts:

 starting the application on a remote machine (z/OS)

 debugging the application from Eclipse



The Application

package eclipseLab;

import eclipseLab.RemoteMemGrab;

public class RemoteRunIt {
public static void main(String[]
args) {

int i=0;
System.out.println(“Exercise 3");
while (i++ < 3) {

RemoteMemGrab aGrab =
new
RemoteMemGrab();

}
}

}

package eclipseLab;

public class RemoteMemGrab {
public RemoteMemGrab()
{

System.out.println("About to
allocate a StringBuffer");

StringBuffer buf= new
StringBuffer(10000);

}
}



On the remote machine

 The files and directory structure on z/OS

 run runMeRemote which starts RemoteRunIt suspended waiting on debug
instructions on port 8001



In Eclipse

 Select Run > Debug , enter the following settings and select
Debug



In Eclipse

 A breakpoint was set at the start of the main method and
execution is suspended here.



An in flight snapshot

.



Java (Class) API

As well as the Virtual Machine the Java sdk contains a
class library

http://java.sun.com/j2se/1.5.0/docs/api/index.html

http://java.sun.com/j2se/1.4.2/docs/api/index.html

http://java.sun.com/javase/6/docs/api/index.html

Java applications are written to this API

Exercise 1 uses the I/O API available in the java.io
package.

http://java.sun.com/j2se/1.4.2/docs/api/java/io/package-
tree.html



Java (Class) API

The main Java packages are:
java.awt Contains all of the classes for creating user interfaces and for

painting graphics and images.

java.io Provides for system input and output through data streams,
serialization and the file system.

java.lang Provides classes that are fundamental to the design of the Java
programming language.

java.net Provides the classes for implementing networking applications.

java.security Provides the classes and interfaces for the security framework.

java.util Contains the collections framework, legacy collection classes, event
model, date and time facilities, internationalization, and miscellaneous
utility classes.



The Collections API

http://java.sun.com/j2se/1.5.0/docs/api/index.html

• A Collection is an object that groups multiple elements into a single unit.
• Collections are used to store, retrieve, manipulate, and communicate

aggregate data.



The Future Runs on System z

Thank You!


