
Java and Eclipse
for Beginner Part I

Session 1181

Presented by

Theresa Tai
IBM System z New Technology Center
Poughkeepsie, New York
ttai@us.ibm.com

Housekeeping Reminder

 No food or drink in the Lab

 Please silent mobile phones

 Don't hesitate to ask questions

 Have fun!

Content

 Lecture

What is Java?

Java Basics

Java Code Structure

Eclipse Basics

 Hands-on Lab

Explore the Eclipse Development Environment

Write and Run Simple Java Applications

What is Java?

 A platform

Software only

Runs on top of hardware platforms

Two components:
 JVM – Java Virtual Machine

API – Application Programming Interface

 A programming language

Compiled and Interpreted

 Java software platform consists of

The Java language, JVM and Java class libraries

What is Java Language?

 A programming language (has some of the characteristic as C++)

 Source code in plain text files with a .java extension

 Compiled and interpreted

 .java source files compiled into .class files

Java
Program

Compiler

Interpreter

Running
Program!

M
yP

rogram
.java M

yP
ro

gr
am

.c
la

ss

0010110100

Java Bytecodes

 Instructions for the Java Virtual Machine (JVM)

 Write Once, Run Anywhere
Compiled bytecode is platform independent
Any device capable of running Java will be able to

interpret bytecode into platform specifics

 Development Tools
The Java compiler (javac)
The Java launcher (java)
The Java documentation tool (javadoc)

The Java Platform

Java
Source

System Control Program

Hardware

Java Virtual Machine

& JIT

Java
compiler

JFC

Application APIs

Collection of
Standard Java

APIs

Class Libraries

z/OS
z Linux
AIX

AS/400

Linux

WinTel

....

DebuggerLine
Editor

SDK

Benefits of Java

 Get started quickly

 Write less code

 Write better code

 Write programs faster

 Avoid platform dependencies

 Write once, run anywhere

 Distribute software more easily

 Network enabled

The Java APIs and Integration Libraries

 Application Programming Interfaces (APIs)

 Provides the core functionality of the Java
programming language

 A set of class libraries
 From basic objects, to networking and security, XML

generation and database access

 Programmers uses when writing Java source code

 Included in Java platform

 Prewritten code
 Organized into packages of similar topics

 Integration Libraries
 IDL, JDBC, JNDI, RMI and RMI-IIOP

 Enable database access and manipulation of remote
objects

API Packages

 Applets

 Internationalization

 Security

 Graphical User Interface

 Serialization

 Java Database Connectivity (JDBC)

Java Code Structure

 Source file
 Java source code
 .java file extension

 Holds class definition

 Class
 A construct defines data

and methods
 One or more methods

 Methods
 One or more sequence of

statements

 Statements
 Typically operate on data

Source

Class

Method 1

Method 2

Statements

Statements

Anatomy of a class

public class MyFirstApp {

public static void main (String[] args) {

System.out.println(“I rule!”);

}

}

The fundamental building block in Java
programming language is the class

Java Class

The “{“ mark the
beginning of the

class

The “}” mark the end
of the class

The name
of the class

Java Class

A class in and of itself is not an object… Its
like a blueprint that define how object will
look and behave when the object is created
or instantiated from the specification declared
by the class… just as you can construct many
houses all the same from the same
blueprint/architecture drawing.

Anatomy of a main Method

public static void main (String[] args) {

System.out.print(“I rule!”);

}

The method does one
thing that is to print

“I rule!”

The entry point to every application is its main
method

The method
returns no value

The name
of the

method

The
arguments
for the main

method

Basic Java Syntax

 Comments

 Variables and Data
Types

 Primitive Data Types

 Reference Data
Types

 Operators

 Expressions

 Arrays

 Strings

Please see the crib sheet included in the hands-on lab
instructions document

Classloaders and classpath

 Classloaders
 Bootstrap - classes from core Java APIs

 Extensions - classes that are standard extensions packages in the
extensions directory

 Application - classes from the local file system and it will load your
application from the CLASSPATH

 classpath
 A user defined environment variable used by Java runtime to

determine where predefined/user-defined classes are located

 User-defined classes that are complied with the javac compiler
 i.e. command-line MyProgram.java MyProgram.class

Strings

 The String class is included in the
 java.lang.Object package

 The String class represents character strings

 When you declare and use a String, you are
actually using an instance of the String class

 Basic use of a String

String s = “Hello World! ”;

String t = “Look at Me.”;

System.out.println(s + t);

Hello World! Look at Me.

Anatomy of an Array

int[] nums;

nums = new int[3];

nums[0] = 1;
nums[1] = 2;
nums[2] = 3;

Declares an array of int’s
named “nums”

Instantiates an Array object
with the key word “new”

Gives the Array object
a length of [3]

Gives each
element a
value

Arrays

 Array class is included in the java.lang.Object package

 The Array class contains various methods for manipulating arrays

 Access array elements using [] anArray[0] = 10;

 Special array property length anArray.length

 Declare as type[] varName; int[] myInts;

 Must allocate memory before use myInts = new int[10];

 General form elementType[] arrayName=new elementType[arraySize];

jihgfedcba

0 1 2 3 4 5 6 7 8 9

First Index 7th element at index 6 is “g”

Array length is 10

Sample Array

int [] squares = new int[5]; // create an array of integers

squares[0] = 100; // initialize first element

squares[1] = 200; // initialize second element

squares[2] = 300;

squares[3] = 400;

squares[4] = 500;

If … then … else

If the condition is false, then the statements in
the else block are executed.

if (expr) {

then_stmnts;

}

else {

else_stmnts;

}

if (a < 10) {

System.out.println("a < 10");

}

else {

System.out.println("a >= 10");

}

Nested If ... then … else

if (expr) {

then_stmnts;

}

else if (expr_1) {

else_stmnts;

}

else {

else_stmnts;

}

int testscore; (int testscore=88;)

char grade;

if (testscore >= 90) {

grade = 'A';

} else if (testscore >= 80) {

grade = 'B';

} else if (testscore >= 70) {

grade = 'C';

} else if (testscore >= 60) {

grade = 'D';

} else {

grade = 'F';

}

Break

 Like continue, but abandons entire loop instead of current
iteration

 Can also use labels on break statements

 The break statement has two forms

 Labeled and unlabeled

 You can also use an unlabeled break to terminate a for, while,
or do-while loop

for (int i = 0; i < array.length; i++) {

if (array[i] == 0) {

break; // stop processing at first zero entry

}

// process element...

}

first:

for (int i = 0; i < array.length; i++) {

if (array[i] == 0) {

break first;

}

// process element...

}

For loops example

Common short hand:

for (int i=0 ; i < 10 ; i++) {

System.out.println("i = " + i);

}

int i;

for (i=0 ; i < 10 ; i++) {

System.out.println("i = " + i);

}

 i = 0

 i = 1

 i = 2

 ...

 i = 9

Note: you can skip the “ int I; “

While Loops

while (boolean_expr) {

stmnts;

}

 expr evaluated at top of each loop
 body executed if expr evaluates to true
 Make sure your loop terminates!

int i = 0;

while (i < 10) {

System.out.println

("i = " + i);

i++;

}

i = 0

i = 1

i = 2

...

i = 9

do .. while Loops

do {

stmnts;

} while (boolean_expr);

 body executed each time through the loop
 boolean_expr is evaluated at the end of the loop
 body of the loop is always executed at least once

int i = 0;

do {

System.out.println

("i = " + i);

i++;

} while (i < 10);

i = 0

i = 1

i = 2

...

i = 9

What is Eclipse?

 Eclipse is an open source community whose projects are
focused on building an extensible development platform,
runtimes and application frameworks for building,
deploying and managing software across the entire
software lifecycle

 Four download packages
 Java IDE - If you are a Java developer

 Java EE - If you are a Java developer creating Java EE
application

 C/C++ IDE – if you are a C/C++ developer

 RPC - If you are planning to build Eclipse plugins and/or RPC
applications

Eclipse Basics

 The Workbench
Workbench refers to the desktop development environment
Each Workbench window contains one or more Perspectives
More than one Workbench window can exist on the desktop

at any given time

 Perspectives
Contain views and editors
Menus and tool bars

 Plug-ins
Eclipse based product is structured as a collection of plug-ins
Each plug-in contains the code that provides some of the

product's functionality

 Software Updates
Under “Help” view pull down

Workbench Basics
 Resources

 Projects
 Files
 Folders

 Import Wizard
 Importing from the local file system
 Menu bar File Import

 Importing existing projects
 Importing resources from a zip file

 Export Wizard
 Exporting to the file system
 Exporting to an archive file

 Editors
 More than one editor can be opened at the same time but only one can be

active

 Console View
 Running your Java Application
 Messages will be displayed in the Console View
 Problem View – syntax error, warnings…

About Eclipse Tooling

 Free download from http://www.eclipse.org
 Click on
 The Java for the Beginner Labs use the Eclipse IDE for Java

Developers

 The Java EE Developer

 IBM development tooling such as WSAD, WSDD, WSAD/IE and
RAD are extensions to Eclipse

 Eclipse is an excellent starting point for learning Java
development on your own
 Start with workbench basics and tutorials

 Eclipse tool hints and tips
 Click Help > “Tips and Tricks” from the menu bar

Eclipse Workspace at a Glance

 The Java and Resource Perspective
Editing, and syntax checking
Automatic code completion, identifying errors
Executing programs

 The Debug Perspective (session 1182 Lab II)
 Local Debugging
Remote Debugging

 About testing with JUnit
Testing is an integral part of development

 Javadoc
 Tool for generating documentation

• doc comments in source code
• HTML format

• Java API documentation
• http://java.sun.com/j2se/javadoc/

Console Area

Java Perspective

Run

Lab Exercises

 Labeled Loop

 Do While Loop

 Command-Line

 SumAverage

Please follow the Lab instructions, Have fun!
Feel Free to Ask Questions…

Sample Solution: Labeled Loop w/break
Statement

public class LoopLabel {
public static void main (String arguments[]) {

myloop:
for (int i = 1; i <= 6; i++)
for (int j = 1; j <= 4; j++) {

System.out.println("i is " + i + ", j is " + j);
if ((i + j) > 5)
break myloop;

}
System.out.println("End of loops");

}

}

Exercise #2: do…while

class DoWhileLoop {
Public static void main (String arguments[]) {

int a = 1;
do {

System.out.println(“Looping, round # “ + a);
a++;

}
while (a <= 10);

}
}

class DoWhileLoop {
public static void main (String arguments[]) {

int a = 1;
do { ………. }
while (a <= 10);

System.out.println("Existing Do While Loop!");
}

}

Exercise #3: Command-Line
SumAverage

public class SumAverage {
public static void main(String arguments[]) {

int sum = 0;

for (int i = 0; i < arguments.length; i++) {
sum += Integer.parseInt(arguments[i]);

}

System.out.println("Sum is: " + sum);
System.out.println("Average is: " +

(float)sum / arguments.length);
}

}

The Future Runs on System z

Thank You!

