Java from the very Beginning
Part Il

Richard Cole
6!" March 2006
Session: 8354




Objectives "ﬁ

s Learn and understand Java’s basic flow of control constructs

% Get some more hands on experience




Agenda

% Part 1 recap
% Conditional statements
= if .. then .. else
= switch
% Looping constructs
= arrays
= for
=  while

= do..while

% Exception handling




Recap

Which of the following identifiers are valid?
A) Big0OlLongStringWithMeaninglessName
B) $int
C) bytes
D)

E) finalist




Recap BN

What is the range of values that can be assigned to a variable
of type short?

A) 0 through 276-1
B) 0 through 232-1
C) -2 through 27°>-1

)
)
D) -231 through 231-1
E)

It depends on the underlying hardware




Recap 2=

What are the values of x,a and b after executing the following
code?

int x, a=6, b=7;
X = a++ + D++;




Agenda

% Part 1 recap
% Conditional statements
= |f .. then .. else
= switch
% Looping constructs
= arrays
= for
= while

= do .. while

“ Exception handling
.




if...then...else

if (boolean_expr) { if (@>10) {
then_stmnts; ‘:> System.out.printin("a > 10");

} }
% Tests against boolean expression (not
integer as in C/C++).
% Curly braces delimit blocks of code { }

» |f the condition is true, then the statements
In the then block are executed.




if...then...else

if (expr) { if (2 <10) {

then_stmnts; |:> System.out.println("a < 10..);
} }
else { else {

else stmnts; System.out.printin("a >= 10");

} }

s |f the condition is false, then the
statements in the else block are executed.




if..then..else

int testscore:

if (expr) { char grade;
then_stmnts;
) if (testscore >= 90) {
else if (expr_1) { grade ="A’;
else stmnts; } else if (testscore >= 80) {
} > grade = ‘B’
else { } else if (testscore >= 70) {
else_stmnts: grade = 'C/;
) } else if (testscore >= 60) {
grade = 'D’;
} else {

grade = 'F';
}




switch =

* Used to make a choice between multiple alternative
execution paths

% Choice must be based on an integer type (byte, short, char
or int)




switch

switch (int_expr) { switch ( grade ) {

case X: case 'A':
case x stmnts; System.out.printin("Outstanding!");
break; break;

casey: case B':
case y stmnts; System.out.printin("Well done");
break; break;

case z: :> case 'C':
case z stmnts; System.out.printin("Satisfactory");
break; break;

default: default:
default case stmnts; System.out.printin("Fail");
break; break;




switch =

* The "default" case is optional

“* The "break" statement is optional, if it is omitted, execution
drops through to the next case

= 3 common source of errors!




switch

switch ( grade ) {

case 'A';

case 'B':

case 'C':
System.out.printin("Pass");
break;

default:
System.out.printIin("Fail");
break;




Agenda

% Part 1 recap
% Conditional statements
= |f .. then .. else
= switch
% Looping constructs
= arrays
= for
= while

= do .. while

“ Exception handling
.




Arrays ;‘__ﬁ’

¢ Declare as type[] varName;
int[ ] myints;

** Must allocate memory before use:
mylnts = new int[10];

% General form:
elementType[ ] arrayName = new elementType[ arraySize ];




Arrays

** Array indices always start at zero.

“* Access array elements using []:
myArray[0] = 5;

% Special array property length
myArray.length




Arrays

int [ ] squares = new int[5];

squares
squares
squares
squares
squares|

B LN = o
Il




For loops 5"!3#

for (initialisation ; continuation_expr ; increment) {
loop_stmnts;

}

s Initialisation executed once at beginning

% increment executed each time round the loop, immediately
after the body of the loop

% continuation_expr is evaluated at the top of the loop on
every iteration. The loop terminates when
continuation_expr is false.




For loops

nw mu
i il
false
Expression
true
l .
.
l
\




For loops

int i;

for (i=0;i<10;i++) {

System.out.printin("i =" + i); |:>

}

common shorthand:

for (inti=0 ;i< 10 ;i++) {
System.out.printin("i =" + i);

}

=>i=0
>i=1
>i=2
> ...

=>i=9

usiy

GWTS

w
¥
P
-

1

a
3
r
=




Exercise %"’ﬁ,

* Print out the command line arguments to a Java program




A Solution

/**

* A Java application to list the command line arguments
*/

class CommandLine {

public static void main(String [] args) {
for (inti=0;i < args.length; i++) {

System.out.printin("Argument " + i + " =" + argsJi]);

}

} // end of main method

} // end of class




While Loops

while ( boolean_expr ) {

stmnts; |:>
}

\/

“* expr evaluated at top of each loop
% body executed if expr evaluates to true
“* make sure your loop terminates!

inti=0;

while (i < 10) {
System.out.printin
(Hi — n + i);

I++;
}
=i=0
=>i=1
=2
=>...




While Loops

Boolean
Expression

true

ents




Do Loops

do {

stmnts; |:>

} while ( boolean_expr );

% body executed each time through the loop
% boolean_expr is evaluated at the end of the loop
% body of the loop is always executed at least once

inti =0;
do {
System.out.println
(lli — 1 + i);
I++;

> while (i < 10);

=2>i=0
=i =1
=>i=2
=>...




Do Loops

|
Boolean
Expression

false




Continue

“ Used to stop the current iteration of a loop

for (inti=0;i< array.length; i++) {
if ( larray[ i ].needsProcessing( ) )
continue;

{

}

// process element...

}




Continue

“ Use labels for nested loops
% Can label opening statement of do, while and for loops

mainLoop: for (inti = 0; i < array.length; i++ ) {

for (intj=0;j<array[i].length; j++ ) {
if (larray[i][]].needsProcessing() ) {

continue mainLoop;

}

// process element...

}
}




Break

* Like continue, but abandons entire loop instead of current
iteration

+» Can also use labels on break statements

for (inti=0;i< array.length; i++) {

if (array[i]==0) {
break; // stop processing at first zero entry

}

// process element...

}




Agenda

% Part 1 recap

s Conditional statements
= |f ..then .. else

= gswitch

4

2)

» Looping constructs

)

= arrays
= for
= while

= do .. while

4

> Exception handling

)




Exceptions and Error Handling

“* "An exception is an event that occurs during the execution
of a program that disrupts the normal flow of instructions".

<+ When an error occurs within a block of code:

= An exception is created containing information about the
error

» The exception is passed to the runtime system

= The runtime system searches backwards through the call
stack to find an exception handler

= if a handler is found, control passes to the handler, else the
program exits




Catching Exceptions

% Surround code which may cause an error in a try block,
and place one or more catch blocks after it
FileReader fileReader;
try {
fleReader = new FileReader("input.txt");
// read from file etc...

fileReader.close(); // done!

}

catch (FileNotFoundException notFoundEx) {
// handle file not found

}

catch (IOException ioEXx) {
// handle error closing file

}




And Finally

“ A finally block may follow a try and its associated catch
blocks

% The code in the finally block will always be executed
try {

}
catch (...) {}

catch (...) {}
finally {
// tidy up code...

}




Exercise fﬁ’ﬁ,

* Improve the "FilePrinter" program so that it handles errors
gracefully.




A Solution

FileReader fileReader = null; // declare outside of the scope of the try block
try {
fleReader = new FileReader(fileName);
int c;
while ( (c = fileReader.read()) '=-1) {
System.out.print((char)c);

}

}
catch (FileNotFoundException notFoundEx) {

System.out.printin("Could not open " + fileName);
}
catch (IOException ioEXx) {
System.out.printin("Error reading from " + fleName);
}
finally {
System.out.printIn();
if (fileReader != null) {
try { fileReader.close(); }
catch (IOException ioEXx) { ; } / nothing we can do now!

}
}




Summary

* Two main forms of conditional constructs:
= if..then...else
= switch

¢ Three looping constructs
= for, do, while

% Error handling via try, catch, finally




