
Java from the very Beginning
Part II

Richard Cole

6th March 2006

Session: 8354

���������	

� Learn and understand Java’s basic flow of control constructs

� Get some more hands on experience

���
�

� Part 1 recap

� Conditional statements

� if .. then .. else

� switch

� Looping constructs

� arrays

� for

� while

� do .. while

� Exception handling

�����

Which of the following identifiers are valid?
A) Big0lLongStringWithMeaninglessName
B) $int
C) bytes
D) $1
E) finalist

�����

What is the range of values that can be assigned to a variable
of type short?

A) 0 through 216-1
B) 0 through 232-1
C) -215 through 215-1
D) -231 through 231-1
E) It depends on the underlying hardware

�����

What are the values of x,a and b after executing the following
code?

int x, a=6, b=7;
x = a++ + b++;

A) x = 15, a = 7, b = 8
B) x = 15, a = 6, b = 7
C) x = 13, a = 7, b = 8
D) x = 13, a = 6, b = 7

���
�

� Part 1 recap

� Conditional statements

� if .. then .. else

� switch

� Looping constructs

� arrays

� for

� while

� do .. while

� Exception handling

��������������	�

if (boolean_expr) {
then_stmnts;

}

if (a > 10) {
System.out.println("a > 10");

}

� Tests against boolean expression (not
integer as in C/C++).
� Curly braces delimit blocks of code { }
� If the condition is true, then the statements
in the then block are executed.

��������������	�

if (expr) {
then_stmnts;

}
else {

else_stmnts;
}

if (a < 10) {
System.out.println("a < 10");

}
else {

System.out.println("a >= 10");
}

� If the condition is false, then the
statements in the else block are executed.

������������	�

if (expr) {
then_stmnts;

}
else if (expr_1) {

else_stmnts;
}
else {

else_stmnts;
}

int testscore;
char grade;

if (testscore >= 90) {
grade = 'A';

} else if (testscore >= 80) {
grade = 'B';

} else if (testscore >= 70) {
grade = 'C';

} else if (testscore >= 60) {
grade = 'D';

} else {
grade = 'F';

}

	�����

� Used to make a choice between multiple alternative
execution paths

� Choice must be based on an integer type (byte, short, char
or int)

	�����

switch (int_expr) {
case x:

case x stmnts;
break;

case y:
case y stmnts;
break;

case z:
case z stmnts;
break;

default:
default case stmnts;
break;

}

switch (grade) {
case 'A':

System.out.println("Outstanding!");
break;

case 'B':
System.out.println("Well done");
break;

case 'C':
System.out.println("Satisfactory");
break;

default:
System.out.println("Fail");
break;

}

	�����

� The "default" case is optional

� The "break" statement is optional, if it is omitted, execution
drops through to the next case
� a common source of errors!

	�����

switch (grade) {
case 'A':
case 'B':
case 'C':

System.out.println("Pass");
break;

default:
System.out.println("Fail");
break;

}

���
�

� Part 1 recap

� Conditional statements

� if .. then .. else

� switch

� Looping constructs

� arrays

� for

� while

� do .. while

� Exception handling

����	

� Declare as type[] varName;
int[] myInts;

� Must allocate memory before use:
myInts = new int[10];

� General form:
elementType[] arrayName = new elementType[arraySize];

����	

� Array indices always start at zero.
� Access array elements using []:

myArray[0] = 5;
� Special array property length

myArray.length

����	

int [] squares = new int[5];

squares[0] = 0;
squares[1] = 1;
squares[2] = 4;
squares[3] = 9;
squares[4] = 16;

��������	

for (initialisation ; continuation_expr ; increment) {
loop_stmnts;

}

� initialisation executed once at beginning

� increment executed each time round the loop, immediately
after the body of the loop

� continuation_expr is evaluated at the top of the loop on
every iteration. The loop terminates when
continuation_expr is false.

��������	

��������������

�������������
	
��
�����

	��
�����
�
���

����
�
��

����

�����

��������	

int i;

for (i=0 ; i < 10 ; i++) {
System.out.println("i = " + i);

}

� i = 0
� i = 1
� i = 2
� ...
� i = 9

common shorthand:

for (int i=0 ; i < 10 ; i++) {
System.out.println("i = " + i);

}

������	�

� Print out the command line arguments to a Java program

���������

/**
* A Java application to list the command line arguments
*/
class CommandLine {

public static void main(String [] args) {

for (int i = 0; i < args.length; i++) {
System.out.println("Argument " + i + " = " + args[i]);

}

} // end of main method

} // end of class

������ ���	

while (boolean_expr) {
stmnts;

}

� expr evaluated at top of each loop
� body executed if expr evaluates to true
� make sure your loop terminates!

int i = 0;

while (i < 10) {
System.out.println

("i = " + i);
i++;

}

�i = 0
�i = 1
�i = 2
�...
�i = 9

������ ���	

����
���
��
�
�����

	��
�����
�
���

����

�����

!�� ���	

do {
stmnts;

} while (boolean_expr);

� body executed each time through the loop
� boolean_expr is evaluated at the end of the loop
� body of the loop is always executed at least once

��� ������

� �

��	
��
��

����
��

�������������

�����

������� �����������

������

������

������

�

������

!�� ���	

����
���
��
�
�����

	��
�����
�
���

����

�����

"�������

� Used to stop the current iteration of a loop

for (int i = 0; i < array.length; i++) {
if (!array[i].needsProcessing()) {

continue;
}
// process element...

}

"�������

� Use labels for nested loops
� Can label opening statement of do, while and for loops

mainLoop: for (int i = 0; i < array.length; i++) {
for (int j =0; j < array[i].length; j++) {

if (!array[i][j].needsProcessing()) {
continue mainLoop;

}
// process element...

}
}

#���$

� Like continue, but abandons entire loop instead of current
iteration

� Can also use labels on break statements

for (int i = 0; i < array.length; i++) {
if (array[i] == 0) {

break; // stop processing at first zero entry
}
// process element...

}

���
�

� Part 1 recap

� Conditional statements

� if .. then .. else

� switch

� Looping constructs

� arrays

� for

� while

� do .. while

� Exception handling

���������	���
�������%��
����

� "An exception is an event that occurs during the execution
of a program that disrupts the normal flow of instructions".

� When an error occurs within a block of code:
� An exception is created containing information about the

error
� The exception is passed to the runtime system
� The runtime system searches backwards through the call

stack to find an exception handler
� if a handler is found, control passes to the handler, else the

program exits

"�����������������	

� Surround code which may cause an error in a try block,
and place one or more catch blocks after it

FileReader fileReader;
try {

fileReader = new FileReader("input.txt");
// read from file etc...
...
fileReader.close(); // done!

}
catch (FileNotFoundException notFoundEx) {

// handle file not found
}
catch (IOException ioEx) {

// handle error closing file
}

�
��������

� A finally block may follow a try and its associated catch
blocks

� The code in the finally block will always be executed

try {
...

}
catch (...) { }
catch (...) { }
finally {

// tidy up code...
}

������	�

� Improve the "FilePrinter" program so that it handles errors
gracefully.

���������

FileReader fileReader = null; // declare outside of the scope of the try block
try {
fileReader = new FileReader(fileName);
int c;
while ((c = fileReader.read()) != -1) {
System.out.print((char)c);

}
}
catch (FileNotFoundException notFoundEx) {
System.out.println("Could not open " + fileName);

}
catch (IOException ioEx) {
System.out.println("Error reading from " + fileName);

}
finally {
System.out.println();
if (fileReader != null) {
try { fileReader.close(); }
catch (IOException ioEx) { ; } // nothing we can do now!

}
}

��&&���

� Two main forms of conditional constructs:
� if..then...else
� switch

� Three looping constructs
� for, do, while

� Error handling via try, catch, finally

