
Steve Ryder
Session 8351

JSR Systems (JSR)
sryder@jsrsys.com

Object Oriented Programming
Part I of II

2

Objectives

�Compare/Contrast OO Programming to Procedural
Programming

� Introduction to these Object Oriented concepts:
� Classes
� Objects
� Class Data
� Methods

�Understand the lifecycle of an object

3

Shape Shifter Program

� Specifications
� Shapes on a GUI

• Square
• Circle
• Triangle

� When user clicks on shape
• Shape will rotate clockwise 360 degrees
• An AIF sound file specific to that shape will play

4

Procedural Design

�Write Important procedures

rotate(shapenum) {
//make the shape rotate 360 degrees
}

playSound(shapenum){
//use shapeNum to lookup which
//AIF sound to play, and play it
}

5

Object Oriented Design

� Write a class for each of the shapes

rotate() {
//code to rotate square
}

playSound(){
//code to play AIF
//for a square
}

Square

rotate() {
//code to rotate circle
}

playSound(){
//code to play AIF
//for a circle
}

Circle

rotate() {
//code to rotate
// triangle
}

playSound(){
//code to play AIF
//for a triangle
}

Triangle

6

A Specification Change

� Add amoeba shape

� When user clicks on amoeba
� Shape will rotate
� An .hif sound file will play

7

Procedural Design

�Change previously-test code
� Rotate procedure will work as-is
� PlaySound procedure must change

playSound(shapenum) {
//if the shape is not an amoeba,

//use shapenum to look up the AIF

//else
//play amoeba .hif sound

}

8

Object Oriented Design

� Write one new class

� No need to touch previously-tested code

rotate() {
//code to rotate
// amoeba
}

playSound(){
//code to play .hif
//for a amoeba
}

Amoeba

9

User Testing – Another Change

� All of the shapes rotated around the center of the
shape.

� The amoeba shape, however, should rotate around
a point at one end. Like this:

10

Procedural Design

� Add rotation point arguments to the rotate
procedure

� A lot of code was affected
Rotate(shapenum, xPt, yPt) {
//if the shape is not an amoeba

//calculate the center then rotate

//else
//us the xPt and yPt as the
//rotation point then rotate

}

11

Object Oriented Design

� Change rotate only in the amoeba class

int xPoint
int yPoint

rotate() {
//code to rotate //amoeba using
//x and y coordinates
}

playSound(){
//code to play .hif
//for a amoeba
}

Amoeba

12

Object Oriented Design concepts

� Class

� Object

� Method

� Class Data

13

Finding Classes

�Look for nouns in the specification
“Customers phone in and place an order for one or

more items. The customer service representative
creates a new order and adds the items to it. Next
the shipping address and payment details are taken
so that the order can be shipped and the customer’s
account charged.”

� Customer
� Order
� Item
� Can you find others?

14

Objects

� What is the difference between a class
and an object?
� A class is not an object but…
� It is used to construct them

� A class is a blueprint for an object
� It explains how to make an object of that type
� Each object made from that class can have its own

instance variables

15

Objects

Think of an object like a pack of blank RolodexTM

cards.

� Each card has the same instance variables (blank
fields)

� A completed card creates an instance of an object (a
contact)

� The specific entries on each line represent the
object’s state (name, phone, address)

16

Class Data and Methods

When you design a class, you think about the objects
that will be created from that class. You think about:

�Things the object knows

�Things the object does

int xPoint
int yPoint
rotate() {
//code to rotate //amoeba
using
//x and y coordinates
}
playSound(){
//code to play .hif
//for a amoeba
}

Amoeba

knows

does

17

Class Data and Methods

� Things an object knows about itself are called
� Instance variables

� Things an object can do are called
� Methods

char label
int color

setColor()
setLabel()
depress()
undepress()

Button

Instance
variables

Methods

18

Your First Object

� What does it take to create and use an object?
� You need two classes

• One for the type of object you want to use
• One to test your new class

int size
char breed
char name

bark()

Dog

main()

DogTestDrive

19

Write the Dog class

class Dog {
int size;
String breed;
String name;

void bark() {
System.out.println(“Ruff! Ruff!”);

}

}

20

Write the DogTestDrive class

class DogTestDrive {
public static void main (String [] args) {

Dog d = new Dog();
d.size = 40;
d.bark();

}

}

21

The Behavior of an Object

� Instance variables affect method behavior
� Every instance of a particular class has the same

methods
� But, the methods can behave differently based on

the value of the instance variables.

22

The Song class

� Two instance variables: title and artist.

� Methods to set the title and artist

� A method to play a song
String title
String artist

setTitle()
setArtist()
play()

Song

23

The Song class

Song t2 = new Song();

t2.setArtist(“Travis”);

t2.setTitle(“Sing”);

Song t3 = new Song();

t3.setArtist(“Sex Pistols”);

t3.setTitle(“My Way”);

Song t4 = new Song();

t4.setArtist(“Sinatra”);

Sing

Travis

My Way

Sinatra

My Way

Sex Pistols

t2

t3

t4

24

The Lifecycle of an Object

� Creating objects

� Using objects

� Cleaning up unused objects

25

Creating an object

� This statement initiates a reference to a new object
and calls the constructor.

Dog d = new Dog();

The new operator allocates memory for the object

The reference to the new object

Calls the constructor method of the Dog class

Defines the type of reference

26

Constructors

�A special method defined in the class.
� Initializes the state of an object.
� Makes sure the new object is ready for use.

�Every class has a default constructor that takes no
arguments.

�You can also provide your own constructors.
� There can be many as long as each is differentiated by the

number and type of arguments.
� Constructors with arguments are called with statements like this:

• Dog d = new Dog(name, size);
• Dog d = new Dog(breed, name, size);

27

Using an object

� The Dot Operator
� The dot operator gives you access to an object’s state

and behavior.
• Make a new object

Dog d = new Dog();
• Call one of the object’s methods

d.bark();
• Set one of the object’s instance variables

d.size = 40;

28

The Java Heap

� Each time an object is created in Java, it goes
into an area of memory known as the Garbage-
Collection heap.
� All objects no matter when or how created go on the

heap.
� Upon object creation, Java allocates memory space on

the heap according to the object’s needs.

29

Cleaning up

� When an object is no longer in use, it becomes
eligible for garbage collection.

� If you’re running low on memory, the GC will
run and throw out the unreachable objects.

30

Counting References

� The Java Runtime keeps track of the references
to an object.

� When the number of references drops to zero,
the object without a reference is marked for
collection.

31

Garbage Collection

1

2

Book a = new Book();

Book b = new Book();

b

a

Active References: 2

Reachable Objects: 2

Abandoned Objects: 0

32

Garbage Collection

1

2

b = a; or

b = null;

b

a

Active References: 2

Reachable Objects: 1

Abandoned Objects: 1

33

Garbage Collection

1

2

b = a; or

b = null;

b

a

Active References: 2

Reachable Objects: 1

Abandoned Objects: 1

Java
says,

“Come
and get

it.”

34

Garbage Collection

1

2

Sometime later….

b

a
GC

35

Revisiting the Objectives

� Compare/Contrast OO Programming to Procedural
Programming
� Add/change features without touching tested code.

36

Revisiting the Objectives

�Introduction to these Object Oriented
concepts:
� Classes

• Look for nouns in specification.
• The blueprint for an object.

� Objects
• The realization of a class.

� Class Data
• Things an object knows.

� Methods
• Things and object does.

37

Revisiting the Objectives

� Understand the lifecycle of an object
� A constructor starts it.
� The heap holds it.
� The Garbage Collector clears it.

