Object Oriented Programming
Part | of |l

Steve Ryder
Session 8351
JSR Systems (JSR)

sryder@jsrsys.com

Obijectives

< Compare/Contrast OO Programming to Procedural
Programming

“ Introduction to these Object Oriented concepts:
Classes

= QObijects

Class Data

Methods

< Understand the lifecycle of an object

Shape Shifter Program

< Specifications
» Shapes on a GUI

« Square
« Circle
 Triangle

= When user clicks on shape
» Shape will rotate clockwise 360 degrees
« An AlF sound file specific to that shape will play

Procedural Design

“» Write Important procedures

rotate(shapenum) {
//make the shape rotate 360 degrees

}

playSound(shapenum){
/luse shapeNum to lookup which
//AIF sound to play, and play it

}

Object Oriented Design

% Write a class for each of the shapes
Square Circle Triangle

rotate() { rotate() { rotate() {
/Icode to rotate circle /Icode to rotate

//code to rotate square

}

playSound(){
/[code to play AIF

/[for a square

}

}

playSound(){
/[code to play AIF

//for a circle

J

/[triangle

}

playSound(){
/[code to play AIF
/[for a triangle

}

uSEg

A Specification Change

“ Add amoeba shape

< When user clicks on amoeba
= Shape will rotate
= An .hif sound file will play

Procedural Design

< Change previously-test code
= Rotate procedure will work as-is
» PlaySound procedure must change

playSound(shapenum) {
//if the shape is not an amoeba,
//luse shapenum to look up the AlF

/lelse
//play amoeba .hif sound

}

Object Oriented Design

+» Write one new class

< No need to touch previously-tested code

Amoeba

rotate() {
//code to rotate
// amoeba

}

playSound(){
/[code to play .hif
/[for a amoeba

}

User Testing — Another Change

“ All of the shapes rotated around the center of the
shape.

“ The amoeba shape, however, should rotate around
a point at one end. Like this:

Procedural Design

< Add rotation point arguments to the rotate
procedure

+ A lot of code was affected
Rotate(shapenum, xPt, yPt) {

//if the shape is not an amoeba
/[calculate the center then rotate

/lelse
//us the xPt and yPt as the
//rotation point then rotate

10

Object Oriented Design

< Change rotate only in the amoeba class

Amoeba

int xPoint
int yPoint

rotate() {
/[code to rotate //amoeba using
//x and y coordinates

}

playSound(){
//code to play .hif
//for a amoeba

}

11

Object Oriented Design concepts

s Class
< Object
+ Method

% Class Data

12

Finding Classes

< Look for nouns in the specification

“Customers phone in and place an order for one or
more items. The customer service representative
creates a new order and adds the items to it. Next
the shipping address and payment details are taken
so that the order can be shipped and the customer’s
account charged.”

Customer

Order

ltem

Can you find others?

13

Objects

<+ What is the difference between a class

and an object?

= A class is not an object but...
= |t Is used to construct them

< A class is a blueprint for an object
= |t explains how to make an object of that type

» Each object made from that class can have its own
Instance variables

14

Objects

Think of an object like a pack of blank Rolodexm™
cards.

% Each card has the same instance variables (blank
fields)

% A completed card creates an instance of an object (a
contact)

% The specific entries on each line represent the
object’s state (hame, phone, address)

15

Class Data and Methods

When you design a class, you think about the objects
that will be created from that class. You think about:

\/
0’0

'hings the object knows

<+ Things the object does Amocba

int xPoint

int yPoint

rotate() {

/Icode to rotate //amoeba
using

/Ix and y coordinates

}
playSound(){
/[code to play .hif
//for a amoeba

) 16

41— knows

does

Class Data and Methods

“ Things an object knows about itself are called
= Instance variables

“ Things an object can do are called
= Methods Button

char label

) Instance
int color

variables

setColor() <« Methods

setLabel()
depress()
undepress()

17

Your First Object

< What does it take to create and use an object?

= You need two classes

* One for the type of object you want to use
* One to test your new class

Dog .
DogTestDrive
int size
char breed main()
char name
bark()

18

Write the Dog class

class Dog {
int size;
String breed;
String name;

void bark() {
System.out.printin(“Ruff! Ruff!”);

19

Write the DogTestDrive class

class DogTestDrive {

public static void main (String [] args) {
Dog d = new Dog();
d.size = 40;
d.bark();

20

The Behavior of an Object

 Instance variables affect method behavior

= Every instance of a particular class has the same
methods

= But, the methods can behave differently based on
the value of the instance variables.

21

The Song class

» Two instance variables: title and artist.

+ Methods to set the title and artist

“ A method to play a song

Song

String title
String artist

setTitle()
setArtist()

play()

22

The Song class

Song t2 = new Song();

t2.setArtist(“Travis”);
t2.setTitle(“Sing”);

Song t3 = new Song(); My Way
t3.setArtist(“Sex Pistols”); <:> Moo e

t3.setTitle(“My Way”);

My Way
Song t4 = new Song(); @ Sinatra

t4.setArtist(“Sinatra”); 23
E - .

The Lifecycle of an Object

< Creating objects
< Using objects

< Cleaning up unused objects

24

Creating an object

% This statement initiates a reference to a new object
and calls the constructor.

Dog d = new Dog();

A A A
ICaIIs the constructor method of the Dog class

The new operator allocates memory for the object

The reference to the new object

Defines the type of reference

25

Constructors

“ A special method defined in the class.
= |nitializes the state of an object.
= Makes sure the new object is ready for use.

“ Every class has a default constructor that takes no
arguments.

“ You can also provide your own constructors.

= There can be many as long as each is differentiated by the
number and type of arguments.

= Constructors with arguments are called with statements like this:
« Dog d = new Dog(name, size);
« Dog d = new Dog(breed, name, size);

26

Using an object

< The Dot Operator
* The dot operator gives you access to an object’s state
and behavior.
- Make a new object
Dog d = new Dog(),
* Call one of the object’s methods
d.bark();

« Set one of the object’s instance variables
d.size = 40;

27

The Java Heap

“ Each time an object is created in Java, it goes
into an area of memory known as the Garbage-
Collection heap.

= All objects no matter when or how created go on the
heap.

= Upon object creation, Java allocates memory space on
the heap according to the object’s needs.

28

Cleaning up

“ When an object is no longer in use, it becomes
eligible for garbage collection.

< If you’re running low on memory, the GC will
run and throw out the unreachable objects.

29

Counting References

“ The Java Runtime keeps track of the references
to an object.

“* When the number of references drops to zero,
the object without a reference is marked for
collection.

30

Garbage Collection

Book a = new Book();
Book b = new Book();

Book Reference
Active References: 2

Reachable Obijects: 2
Abandoned Objects: 0 Book Referenic?

31

Garbage Collection

Book Reference
Active References: 2

Reachable Obijects: 1
Abandoned Objects: 1

32

Garbage Collection

Book Reference
Active References: 2

Reachable Objects: 1
Abandoned Objects: 1

33

Garbage Collection

Sometime later....

34

Revisiting the Objectives

< Compare/Contrast OO Programming to Procedural
Programming
= Add/change features without touching tested code.

35

Revisiting the Objectives

< Introduction to these Object Oriented
concepts:

» Classes
» Look for nouns in specification.
* The blueprint for an object.

= Objects

 The realization of a class.

= Class Data
« Things an object knows.

= Methods

» Things and object does.

36

Revisiting the Objectives

< Understand the lifecycle of an object
= A constructor starts it.
= The heap holds it.
= The Garbage Collector clears it.

37

