Java Development with Eclipse
Lab 2 The debug Perspective

1. Debugging functionality

1. In the Resource perspective open the Runlt class in the java window.
2. Enter Run>Debug and the following window is displayed :

Create, manage, and run configurations

Create a configuration that will launch a Java virtual machine in debug mode.

C@ﬁﬁ‘ﬂm: Mame: IRunIt
%G| Java Applet
23] Java Application = — —— — ; - :
LT R © wain | e9- arquments | =i e | 0 Classpatn | 5 Source | B8 Envirorment | T Common |
se-uJu JUnit Project: :
¥ JUnit PlugHn Test [Leb . Browse...
: @. Remote Javs Application
4 Run-time Workbench Main class
I edipseLab. Runlt Search.
¥ Indude external jars when searching for a main dass:
¥ Indide inherited mains when searching for a main dass:
W stop in main
d [2
Mew | Dekte | soply | mevert |
~ Dehug I Close |

This is the debug configuration

3. ‘Click’ on the Argument tab and enter ‘hello’ in the ‘Program Arguments’ panel. See below.

zl
Create, manage, and run configurations
Create a configuration that will launch a Java virtual machine in debug mode.
Configurations: Mame: | RunIt
Java Applet
-[7] Java Application S :
i[5 Runit @ Main (9= Arguments | = Re | ., Classpath | % Source | P8 Envrorment | T common |
-Ju Junit ~Program arguments:
-Ju7 JUnit Plug-n Test helo] |
E. Remote Java Applicatior
g Run-time Workbench =]
VM arguments:
-verbosegc ;I
d|
Wﬁﬂawl
—Working directory:
I ${workepace lociisb)
¥ Use default working directory Wotkepate. | (File Systen. | Yariatles: . |
1| | >
Mew | D_EEL:E | Apply | Revert [
Debug Close |
4.‘Click’ on the ‘Debug’ button.
This opens the ‘Debug’ Perspective shown in the current slide in the presentation.
The Runlt application is being executed and is suspended at the first instruction.
The blue arrow in the margin and the greyed line indicate where the programs is suspended.

To change the template for this generated type
Windowkgt;Preferences>:Javasgt:Code Generatio
&=

prublic cla=ss BunlIt {

,ié public _sta_1§ic void main{String[]l args) {
:N System.out.println{"Lab 1"});

:ﬁ while (i++ < 1000} {

_;t MemGrab aGrab = new MemGrab():
-

| !

s;s }

5. Look at the other windows in the debug perspective

In the attributes window’s variables tab the only known ‘variable’ the program argument

‘hello’ is displayed.

Try ‘opening’ the ‘args’ variable and see the various components of a String array exposed.

i l";ffz«Debug aJJa\'ea =

s S

ir (i
[0} = hello”™
= F count=5
m hash=0
@ § offsst=0
B @' value=char[s] (d=29)

[]=h

[1=¢
[Z=1
[3]=1
[4=0

[hello]

ki

1

6. Click on the run menu option and see the debugging functionality now enabled:

Resume, terminate, step with filters, step into ...

Project | Run Window Help

5 J 4 © Toggle Line Breakpaint Ctrl+5hift+B

@ Toggle Method Breakpoint E =
oggle akpoin 3 | % v =08

@Togglg Watchpoint

", Skip Al Breakpoints

41 Add Java Exception Breakpoint...
Add Class Load Breakpainit. ..

o methot

mexe (1

E¥ Resume

Bl Sspend

(B Terminate

S Step Into
nStep Over

% Stem Reburn
=] Run to Line

T Use Step Filters

EE

B
Cul+R
Shift+F5

=Variables &3 . Breskpoints

Eb-@ args= String[1] {id=11)
=l & [0]= "hello”
F count=5
hash=10
F offset=0
B~ m " value= char[5] {t
S [o=h
& [l=e
a [I=]
a [3=1
a [=0

[hello]

7. ‘Click’ on ‘Step Over’. The variable ‘i’ now appears in the variable tab:

E- & 0] hello”
"""" @’ count=5

El m F value= char[5] (d=24)
----- a [0l=h

a [l=e

a [2=]

a [3=1

& [[=o0

[hello]

=

8. ‘Click’ on ‘Step Over’ or press F6 until ‘i’ is 10.
See how the program is executing 1 line at a time.

9. Step through the program until the execution is suspended at line
MemGrab aGrab = new MemGrab () ;
Now enter F5 or ‘Step Into’ and see the program suspend in the MemGrab() constructor.
In the thread window the java stack can be seen. Runlt.main(String[]) method calls
MemGrab.<init>() method,

. System Thread [Signal dispatcher] (Running)
i 'ﬁlﬂ Thread [main] (Suspended)
= MemGrab. <imit={) line; 18
L= Runlt. main{string[J) line: 23
b C:\Applications\IDKs Java 141 \binjavaw. exe (10/07/04 23:

10. Now enter F7 or ‘Step Return’ to return to the Runlt.main method.

11. Place the cursor over ‘i’ in the variable tab and ‘double click’ to relieve the following
window. ‘i” can now be changed. Change it to ‘82" and click on OK.

ﬁset Variable Value %]

Enter a new value for i

2]

Ok I Cancel

12. Step through the program until the execution is suspended at line
MemGrab aGrab = new MemGrab();
Now depress the Ctrl + Shift + b keys. A breakpoint has been set at this source code line.
Now enter F8 or ‘Resume’, program execution now proceeds to the next breakpoint.
Enter F8 a few times and each time see ‘i’ incremented to indicate that a whole loop
Iteration has been executed.

13. Click on the ‘breakpoints’ tab to see the breakpoint added in section 12.

14. Try ‘hot code replacement’. Suspend the java application on a breakpoint. Modify
the code, for example, change Runlt.java with the following 1 line addition:

int i=0;

System.out.println ("Labl");

while (i++ < 1000) {
MemGrab aGrab = new MemGrab () ;
i++;

}

Enter ‘Ctrl s’ to save Runlt.java. If you have automatic compilation enabled Runlt.java
will be recompiled. Continue editing the application. You have changed the application
code during an execution. Stepping through notice how I is incremented twice in each
loop body as a result of this code modification.

15 To end the lab select either the terminate debug menu option or continue stepping though
the code.

