8355
Java Lab:
From the Very Beginning
- Part 3 of 3

Steve Ryder, JSR Systems: adapted from Object Oriented programming by:
Stephen Pipes IBM Hursley Park Labs, United Kingdom
SHARE Meeting



Intro to Java recap

e Classes are like user-defined types
e Objects are like variables of those types
e We send messages which invoke methods

e Classes have a class object



Agenda

e Inheritance and relationships

eLab Exercises (see examples of polymorphic
overloading, encapsulation, and inheritance)

e Make changes to programs to illustrate benefits
of Inheritance and encapsulation.

. Abstraction and interfaces
e Polymorphism (if we have time)
e Overloading



The Circle Class

class Circle

{
// Data encapsulated by the class
private SimplePoint center;
private int radius;

// Methods that form external interface

public double circumference() { ... }

public double area(){ ... }

public SimplePoint getCenter() { return center; }
public int getRadius() { return radius; }



The GraphicCircle class #1

class GraphicCircle

{
// Data encapsulated by the class
private SimplePoint center;
private int radius;

// Methods that form external interface

public double circumference(){ ... }

public double area(){ ... }

public SimplePoint getCenter() { return center; }
public int getRadius() { return radius; }

public void draw(Graphics g) { ... }



The GraphicCircle class #1

eIt's a cut-and-paste job
e Error prone
e Two copies of the "Circle" code

e Harder to maintain



The GraphicCircle class #2

class GraphicCircle

{
// Data encapsulated by the class

private Circle circle;

// Methods that form external interface
public double circumference() { ... }

public double area(){ ... }

public SimplePoint getCenter()

{ return circle.getCenter();

}
public int getRadius() { return circle.getRadius(); }

public void draw(Graphics g) { ... }
}



The GraphicCircle class #2

e Uses existing code and logic for base circle

e But, needs lots of annoying wrapper methods!



The GraphicCircle class #3

class GraphicCircle extends Circle

{
public void draw(Graphics g) { ... }

}



The GraphicCircle class #3

e GraphicCircle is defined as an extension of the
Circle class

e We call it a subclass

e GraphicCircle has all of the functionality of
Circle, plus its own additional methods (and data)

e We say that GraphicCircle inherits the
functionality of Circle We call the act of
extending a class inheritance



Inheritance

e GraphicCircle is a Circle You can use it anywhere
a Circle is required
opublic aMethod(Circle c¢)

*You can treat it just like a Circle when you use it
ographicCircle.getRadius()

e Use inheritance when you have an "is a"
relationship



Other key relationships

o"is a" -> inheritance
e "has a" -> data member (e.g. Circle has a
SimplePoint, its center) - containment
o '"uses" class A uses class B if:
oa method of A sends a message to an object
of class B
oa method of A creates, receives or returns
objects of class B
o try to minimize the number of classes that use
each other



Lab Exercises

Import from File System
(JavalLabs/projects/JFTVB3):

This project was done several years ago (convert a COBOL extract and report
job stream running on zOS to run on an NT box). I had convinced my client up
front that it would cost him less than the cost of a COBOL compiler for me to
just do it in Java. I actually developed on a Windows 98 box and it ran without
a hitch on the NT box AND it ran faster on the NT box. The speed advantage
was because COBOL did not have the ability to dynamically create a variable
number of output files based on user input. The data files consisted of discrete
sub-sets of data (report type and region). The COBOL application just sorted
the whole file one time. Then each report (about 20 different executions of 3
different reports in the production environment) read the WHOLE file! T wrote
a simple extract that simply split the file into 20 separate files (a simple trick
of creating a new instance of JsrLineOut for each report-type, region
combination). Then each report sorted one file (1/20th of the original sort so it
was sorted in memory), and "printed" the report.



e Examine JsrUtil for examples of overloading (a
form of polymorphism) and useful ways to do
things in Java to mimic COBOL behavior.

e Examine JsrSysout for examples of class and
instance variables and how they might be
useful.

e Examine JsrLineIn and JsrLineOut as a useful
example of encapsulating I/0 logic (especially
the exception handling).



e Examine IbfExtract and file IbfTest.txt as an
example of allocating multiple output files
depending on contents of input file. Run
IbfExtract (Arguments IbfTest.txt). Examine
console (benefits of JsrSysout). Navigate to
Workspace in file system to see that other
files were created in the workspace, but do not
appear in the directory because they were not
imported. Open logIbfExtract.txt

e Examine IbfReport (example of Super Class)

e Examine IbfReportl (example of a sub-class)



* Run IbfReportl
(Arguments cc72.txt PR5196COST 1.txt)

e Modify IbfReport to make explicit setter
methods (setBranch and setMonth) that are
abstract. What happens to IbfReport1?

e Modify IbfReportl change setCC to setBranch
and setMonth. This illustrates power of
Abstract classes to force sub-classes to
implement required methods.



e Run IbfReportl again.

Questions?

Now for more detail on
Abstraction and Interfaces



Abstraction and interfaces

We extend our super class to create more specific
and useful sub classes

Circle

Shape Rectangle
Hexagon

General super class Specific sub class

public abstract class Shape

{

public abstract double area();
public abstract double circumference();

}




Abstraction and Interfaces

e The Circle class can calculate the area and
circumference of a circle only

class Circle extends Shape
{
protected double r; protected static final double
PI=3.14159265358979323846;
public Circle() { r= 1.0; }
public Circle(double r) { this.r = r; }

public double area() { return PT * r * r; }
public double circumference() { return 2 * PL * r; }
public double getRadius() { return r; }



Abstraction and Interfaces

e On the other hand, we want the Shape class
(super-class) to encapsulate whatever features
all our shapes have in common, such as area and
circumference

e Since the Shape class is generic to all shapes, it
cannot implement these features, so we use
abstract methods as placeholders in our Shape
class



Abstraction and Interfaces

e Abstract methods do not implement functionality;
note the semicolon immediately after the method
definition.

e Classes that contain abstract methods cannot be
instantiated, since they contain no code

e A class may be declared abstract even if it has
not abstract methods, thus preventing it from
being instantiated.

« A subclass of an abstract class can be
instantiated if it overrides each of the abstract
methods of its superclass and provides an
implementation (method body).



Abstraction and Interfaces

e Abstraction allows us to group types of classes
and deal with them in a standard way

e We can group any classes that extend and
implement the abstract Shape class



Abstraction and Interfaces

e What is this code doing?

Shape[] shapes = new Shape[2]; // create an array of Shape
shapes[0] = new Circle(2.0); // Circle is element O
shapes[1] = new Rectangle(1.0, 2.0); // Rectangle is element 1

double total_area = O;
for (int i = O; i < shapes.length; i++) total_area += shapes[il.area(); //
compute the total area



Abstraction and Interfaces

e Defines a Shape array and populates with
different types of Shape. We do not need to
cast the Circle and Rectangle classes onto the
Shape array, since Circle and Rectangle inherit
from Shape

e Calculates the total area of all Shapes in the
array by calling the abstract methods of the
Shape class. The abstract Shape class provides
pointers to the correct methods in the
appropriate sub-classes



Abstraction and Interfaces

e We can draw our shapes by defining an abstract
class called DrawableShape, which provides the
abstract methods to draw the shape

e To draw a circle, we define DrawableCircle which
provides the functionality to draw a circle,
pointed to by the abstract DrawableShape class



Abstraction and Interfaces

e We need to calculate a circle before drawing it,
so we extend our Circle class

e However, Java does not allow more than one
super class, so we define DrawableShape as an
interface

Drawable Shape

Drawable Circle

Circle




Abstraction and Interfaces

Drawable Shape

Drawable Circle

Circle

public interface DrawableShape

{

public void setColor(Color c);

public void setPosition(double x, double y);

public void draw(DrawWindow dw);
}




Abstraction and Interfaces

e Our DrawableCircle class will implement the
DrawableShape interface

public class DrawableCircle extends Circle implements DrawableShape
{
private Color c;
private double x, y;
// Provide a constructor that sets the super-class...
public DrawableCircle(double r) { super(r); }
// Now we implement those methods defined in DrawableShape...
public void setColor(Color c) { this.c = c; }
public void setPosition(double x, double y) { this.x = x; this.y = y; }
public void draw(DrawWindow dw) { dw.drawCircle(x, y, r, c); }



Abstraction and Interfaces

Shape[] shapes = new Shape[2]; // create an array of Shape
DrawableShape[] drawables = new DrawableShape[2]; // create an array of drawable shapes

// now we create some drawable shapes...
DrawableCircle dc = new DrawableCircle(1.1);
DrawableRectangle dr = new DrawableRectangle(...);

// since all drawable shapes extend Shape and implement DrawableShape, we can assign the
above drawable classes to both arrays...
shapes[0] = dc;
shapes[1] = dr;
drawables[0] = dc;
drawables[1] = dr;
double total_area = O;
for (int i = O; i < shapes.length; i++)
{
total_area += shapes[il.area(). // compute the fotal area
drawables[i].setPosition(i*10.0, i*10.0);
drawables[i].draw(draw_window);

}



Abstraction and Interfaces

e Abstract classes may contain both abstract and
implemented methods

e Interfaces contain only abstract methods. There
can be no method code in an interface

e We may implement many interfaces in Java. This
way, it is possible to implement a larger set of
functionality into a single class.

e Constants may be defined in interfaces. These
constants will be available to any class that
implements the interface



Abstraction and Interfaces

e Interfaces can have super-interfaces in the
same way that classes can have super-classes

* The one difference is that interfaces can inherit
from more than one super-interface

e Should a class implement such an interface, it
must implement the abstract methods defined in
the interface and all its super-interfaces



Polymorphism

e Something that is polymorphic may appear in
different guises. A polymorphic object may be cast
appropriately to suit

Example: Thread cast to Object added to a Vector.

e Down-casting casts an object to one of its
descendents

Example: Remove Thread from Object Vector.



Polymorphism

e We can retrieve our object from the Vector
using the elementAt method. It will be returned
as type Object since it was cast to type Object
before we passed it to the Vector

e If we call our object's toString method, it will
be downcast to its original type Thread. Why is
this?



Overloading

e Method overloading is a useful form of
polymorphism, which allows objects to behave in
exactly the same way irrespective of the
information passed it

e In order to overload methods, we define more
than one method of the same name in a class,
but with different types or numbers of args.

System.out.print method...
void print(Object arg) { ... }
void print(String arg) { ... }
void print(char[] arg) { ... } ..



Overloading

e If the print method is invoked with an argument
of unknown type then the compiler will select the
closest match

If a Date object is passed to System.out.print,
the void print(String arg) { .. } method would be
chosen (note: most objects implement a toString method).



Overloading

A simple addition class. We may pass two or three
intfeger arguments in to the Addition object. The
same operation will be performed in either case.

class Addition
{

int calc(int q, int b)
{
return (a + b);

}
int calc(int q, int b, int ¢)
{

return (a + b + ¢);
}

}



Overloading

e Constructors may also be overloaded

public class Shape
{

public Shape(int xPos, int yPos) { ... }

public Shape(int xPos, int yPos, int width, int height) { ... }
}

We may initialize this class in one of two ways.

new Shape(x,y): // provide x and y positions

new Shape(x,y w,h); // provide x, y positions & width, height data
new Shape(); // default constructor <--NO!



What do we know?

e Abstract classes provide a common interface to
all sub-classes. They cannot be instantiated

e Abstract methods provide no implementation but
are placeholders for methods in subclasses

e Classes may have only one super-class.
Interfaces allow us to extend the functionality
of a class by providing abstract methods.
Interfaces may have many super-interfaces

« Polymorphism allows down-casting and overloading



