
Jezz Kelway – kelwayj@uk.ibm.com
Java Technology Centre, z/OS Service.
IBM Hursley Park Labs, United Kingdom

8354
Java from the Very Beginning, Part II

Objectives

�Learn and understand Java's basic flow of control
constructs
�Get some more hands on experience

Agenda

�Part I recap
�Conditional statements

�if..then..else
�switch

�Looping constructs
�Arrays
�for
�while
�do..while

�Exception handling

Recap

�Which of the following identifiers are valid?
�A) Big0lLongStringWithMeaninglessName
�B) $int
�C) bytes
�D) $1
�E) finalist

Recap

�What is the range of values that can be assigned to a
variable of type short?
�A) 0 through 216-1
�B) 0 through 232-1
�C) -215 through 215-1
�D) -231 through 231-1
�E) It depends on the underlying hardware

Recap

�What are the values of x,a and b after executing the
following code?

int x, a=6, b=7;
x = a++ + b++;

�A) x = 15, a = 7, b = 8
�B) x = 15, a = 6, b = 7
�C) x = 13, a = 7, b = 8
�D) x = 13, a = 6, b = 7

Agenda

� Part I recap
�Conditional statements

�if..then..else
�switch

� Looping constructs
�Arrays
�for
�while
�do..while

� Exception Handling

if...then...else

if (boolean_expr) {
then_stmnts;

}

if (a > 10) {
System.out.println("a > 10");

}

�Tests against boolean expression
(not integer as in C/C++).
�Curly braces delimit blocks of code { }
�If the condition is true, then the
statements in the then block are
executed.

if...then...else

if (expr) {
then_stmnts;

}
else {

else_stmnts;
}

if (a < 10) {
System.out.println("a < 10");

}
else {

System.out.println("a >= 10");
}

�If the condition is false, then the
statements in the else block are
executed.

if..then..else

if (expr) {
then_stmnts;

}
else if (expr_1) {

else_stmnts;
}
else {

else_stmnts;
}

int testscore;
char grade;

if (testscore >= 90) {
grade = 'A';

} else if (testscore >= 80) {
grade = 'B';

} else if (testscore >= 70) {
grade = 'C';

} else if (testscore >= 60) {
grade = 'D';

} else {
grade = 'F';

}

switch

�Used to make a choice between multiple alternative
execution paths
�Choice must be based on an integer type (byte, short,
char or int)

switch

�switch (int_expr) {
�case x:

�case x stmnts;
�break;

�case y:
�case y stmnts;
�break;

�case z:
�case z stmnts;
�break;

�default:
�default case stmnts;
�break;

�}

�switch (grade) {
�case 'A':

�System.out.println("Outstanding!");
�break;

�case 'B':
�System.out.println("Well done");
�break;

�case 'C':
�System.out.println("Satisfactory");
�break;

�default:
�System.out.println("Fail");
�break;

�}

switch

�The "default" case is optional
�The "break" statement is optional, if it is omitted,
execution drops through to the next case
�a common source of errors!

switch

�switch (grade) {
�case 'A':
�case 'B':
�case 'C':

�System.out.println("Pass");
�break;

�default:
�System.out.println("Fail");
�break;

�}

Agenda

� Part I recap
� Conditional statements

�if..then..else
�switch

�Looping constructs
�Arrays
�for
�while
�do..while

� Exception Handling

Arrays

�Declare as type[] varName;
� int[] myInts;

�Must allocate memory before use:
� myInts = new int[10];

�General form:
ƒ elementType[] arrayName = new elementType[arraySize];

Arrays

�Array indices always start at zero.
�Access array elements using []:

�myArray[0] = 5;

�Special array property length
�myArray.length

Arrays

�int [] squares = new int[5];

�squares[0] = 0;
�squares[1] = 1;
�squares[2] = 4;
�squares[3] = 9;
�squares[4] = 16;

For loops

for (initialisation ; continuation_expr ; increment) {
loop_stmnts;

}

�initialisation executed once at beginning
�increment executed each time round the loop, immediately after the

body of the loop
�continuation_expr is evaluated at the top of the loop on every iteration.

The loop terminates when continuation_expr is false.

For loops

��������������

�������������

	
��
�����

	��
�����
�
���

����
�
��

����

�����

For loops

int i;

for (i=0 ; i < 10 ; i++) {
System.out.println("i = " + i);

}

�i = 0
�i = 1
�i = 2
�...
�i = 9

common shorthand:

for (int i=0 ; i < 10 ; i++) {
System.out.println("i = " + i);

}

Exercise

�Print out the command line arguments to a Java
program

A Solution

/**
* A Java application to list the command line arguments
*/
class CommandLine {

public static void main(String [] args) {

for (int i = 0; i < args.length; i++) {
System.out.println("Argument " + i + " = " + args[i]);

}

} // end of main method

} // end of class

While Loops

while (boolean_expr) {
stmnts;

}

�expr evaluated at top of each loop
�body executed if expr evaluates to true
�make sure your loop terminates!

int i = 0;

while (i < 10) {
System.out.println("i = " + i);
i++;

}

�i = 0
�i = 1
�i = 2
�...
�i = 9

While Loops

����
���

��
�
�����

	��
�����
�
���

����

�����

Do Loops

do {
stmnts;

} while (boolean_expr);

�body executed each time through the loop
�boolean_expr is evaluated at the end of the loop
�body of the loop is always executed at least once

int i = 0;

do {
System.out.println("i = " + i);
i++;

} while (i < 10);

�i = 0
�i = 1
�i = 2
�...
�i = 9

Do Loops

����
���

��
�
�����

	��
�����
�
���

����

�����

Continue

�Used to abandon execution of the body of a loop, or a
number of nested loops
�A "structured" form of goto...

for (int i = 0; i < array.length; i++) {
if (!array[i].needsProcessing()) {

continue;
}
// process element...

}

Continue

�Use labels for nested loops
�Can label opening statement of do, while and for loops

mainLoop: for (int i = 0; i < array.length; i++) {
for (int j =0; j < array[i].length; j++) {

if (!array[i][j].needsProcessing()) {
continue mainLoop;

}
// process element...

}
}

Break

�Like continue, but abandons entire loop instead of
current iteration
�Can also use labels on break statements

for (int i = 0; i < array.length; i++) {
if (array[i] == 0) {

break; // stop processing at first zero entry
}
// process element...

}

Agenda

� Part I recap
� Conditional statements

�if..then..else
�switch

� Looping constructs
�Arrays
�for
�while
�do..while

�Exception handling

Exceptions and Error Handling

�"An exception is an event that occurs during the
execution of a program that disrupts the normal flow of
instructions".

�When an error occurs within a block of code:
�An exception is created containing information about the error
�The exception is passed to the runtime system
�The runtime system searches backwards through the call stack to

find an exception handler
�if a handler is found, control passes to the handler, else the

program exits

Catching Exceptions

�Surround code which may cause an error in a try block,
and place one or more catch blocks after it

FileReader fileReader;
try {

fileReader = new FileReader("input.txt");
// read from file etc...
...
fileReader.close(); // done!

}
catch (FileNotFoundException notFoundEx) {

// handle file not found
}
catch (IOException ioEx) {

// handle error closing file
}

And Finally

�A finally block may follow a try and its associated catch
blocks
�The code in the finally block will always be executed

try {
...

}
catch (...) { }
catch (...) { }
finally {

// tidy up code...
}

Exercise

�Improve the "FilePrinter" program so that it handles
errors gracefully.

A Solution

FileReader fileReader = null; // declare outside of the scope of the try block

try {
fileReader = new FileReader(fileName);
int c;
while ((c = fileReader.read()) != -1) {
System.out.print((char)c);

}
}
catch (FileNotFoundException notFoundEx) {

System.out.println("Could not open " + fileName);
}
catch (IOException ioEx) {

System.out.println("Error reading from " + fileName);
}
finally {
System.out.println();
if (fileReader != null) {
try { fileReader.close(); }
catch (IOException ioEx) { ; } // nothing we can do now!

}
}

Summary

�Two main forms of conditional constructs:
�if..then...else
�switch

�Three looping constructs
�for, do, while

�Error handling via try, catch, finally

