=

,
SHARE
S >

FLARS OF 1T EXCTLLEMCD

Object Oriented Programming
Part Il of Il

Steve Ryder
08/23/05, Session 8352
JSR Systems (JSR)
sryder@jsrsys.com

Interfaces

e Declaring an interface:

public interface Student {
public abstract void checkCredits () ;

«Compiler won't let you instantiate an interface.

Student s;

S = new Student;

*Using an interface.

Class MedStudent extends Student {

prbisitesszordiahe@li@nc ey Sy ib:

Interfaces — A Closer Look

e An interface is a variation of a class.
* An interface provides only a definition of functionality.
* A separate class actually implements that functionality.

*Use an interface when you want programmers to be able
to use only the specific class and not the general one.

Student

o

MedStludent

Click on view and follow link to header & footer to enter
Copyright and Author information

<4 An interface

Inheritance

« Put common code in a class called a superclass. This is

the more abstract class.

* The more specific class is called a subclass.
* A subclass extends the superclass.

Student

&= Superclass

AN

MedStudent

Click on view and follow link to header & footer to enter
Copyright and Author information

(abstract)

LawStudent

\ Subclass
(specific)

Inheritance — A Closer Look

«When abstraction and inheritance is used correctly,
other programmers will be able to add new ‘kinds’ of

cla

sses to the program at any time. Some rules to

keep in mind:

DO - when one class is a more specific type of a
superclass.

DO — when you have behavior that should be
shared among multiple classes of the same general

type.

DON’T — just so you can reuse code from another
class if the relationship violates either of the two
rules above.

DON'T — if the subclass and superclass do not pass

Click on view gnd foll Rk to feader & fopter to enter
Copyright a:ﬁhévralfgﬂm& %eéf S

Inheritance — A Closer Look

Five steps to inheritance:

1. Look for objects that have common attributes and
behaviors.

2. Design a class to represent common behaviors.

3. Decide if a subclass needs specific behaviors.

4. Look for more opportunities to use abstraction by
finding two or more subclasses that might have

common behavior.

5. Finish the class hierarchy.

Click on view and follow link to header & footer to enter
Copyright and Author information

Inheritance — A Closer Look

Overriding methods —

« When you design superclasses and subclasses, there
may be times that the subclass will have the same
method as the superclass. This is called overriding.

« In this situation, the method for the lowest class (the
most specific class) gets called.

Click on view and follow link to header & footer to enter
Copyright and Author information 7

Inheritance — A Closer Look n

Student
studentld: int = 0
EtudentName:
String
che dlts()\
MedicalStudent LawStudent
studentld: int = 0 studentld: int = 0
Etu_dentName: itu_dentName:
String String
- oheckETEdit—__ checkCredits()
SurgicalStudent PediatricStudent
studentld: int =0 studentld: int =0
itquentName: itquentName:
String String

checkCredits()

CheCK(..r'eCIItS()

Click on view and follow link to header & footer to enter
. . e a

o : - T ——

\

Polymorphism uans

Three steps of object declaration and assignment
1. Declare a reference variable

§ g

([A ([A
Dog myDog = new Dog();

2. Create an object
3. Link the object and the reference

\

e H‘hr',

no

T
=
‘m

!
|

Polymorphism

|

Power references

« The reference and the object can be different

Animal myDog = new Dog();

Polymorphic Arrays

Power references allow you to make
polymorphic arrays

Animal [] animals = new Animal[5];
animals[0] = new Dog();

animals[1] = new Cat();

for (int | = 0; | < animals.length; | ++) {
animalsJi].eat();
animals[i].roam();

Click on view and follow link to header & footer to enter
Copyright and Author information

11

Arguments/Return Types

You can use polymorphic arguments and return
types....
class Vet {
public void giveShot(Animal a) {
//do vet stuff
a.makeNoise;

Click on view and follow link to header & footer to enter
Copyright and Author information

12

Overloading suame

Overloading is having two methods with the
same name but different arguments.

Overloaded methods have great flexibility:

Return types can be different as long as the arguments are
different types.

The return type can not be the only thing changed.
You can vary the access levels in any manner.

Click on view and follow link to header & footer to enter
Copyright and Author information : (A 13

Abstract Classes s nxs

Keep duplicate code to a minimum.
Override generic methods.

Flexible because of Animal subtypes that can be
designed in the future and used in any method
expecting an Animal object as an argument.

Creates a common protocol for all animals that
are related to the Animal superclass.

Click on view and follow link to header & footer to enter
Copyright and Author information

14

\

no

T
=
‘m

Abstract Classes

!
|

|

YEANS OF 1T EXCTLLENCE

Sample Animal class hierarchy

Animal

Canine Hippo Reptile

Wolf

Abstract Classes

Given the class design on the previous slide, the
following declarations are valid:

Animal aHippo = new Hippo();
Canine aWolf = new Wolf();
Wolf aWolf = new Wolf();

But what about this?
Animal anim = new Animal();

What would an Animal object look like?

Click on view and follow link to header & footer to enter
Copyright and Author information

16

Abstract Classes

The Animal class is necessary for the inheritance and

polymorphism we’ve been covering. However ...

Programmers should only be able to instantiate the more concrete subclasses
like Wolf or Hippo because those have shapes, sizes, and behaviors that are
well-defined.

To stop a class from being instantiated, make the class
abstract.

abstract class Animal

abstract class Canine extends Animal

Click on view and follow link to header & footer to enter
Copyright and Author information : (A 17

Abstract Methods

An abstract method must be overridden.

An abstract method has no body.

public abstract void eat();

If you declare a method as abstract, you must
declare the class abstract as well.

Click on view and follow link to header & footer to enter
Copyright and Author information

18

:
\

ARE Flig,
T

!
|
!

Abstract Methods

i

 What can an abstract method be used for?

» The point of an abstract method is that even without any actual
code, you still have defined part of the protocol for a group of
subclasses.

Abstract Methods

What if there are two abstract classes in the

hierarchy?

A subclass can ‘pass the buck.’

If Animal and Canine are both abstract, the first concrete class
to extend Canine must implement all abstract methods from
both Animal and Canine.

Click on view and follow link to header & footer to enter
Copyright and Author information

20

Review sSHARE

Abstract classes and methods are useful for keeping
duplicate code to a minimum while maintaining a
protocol for a group of classes.

An abstract class can not be instantiated. This forces
the programmer to instantiate only the more specific
(or concrete) subclasses.

Abstract methods define the behaviors that all
subclasses must have. Each subclass has its own
unigue way to implement the behaviors.

The first concrete class in the hierarchy (Wolf from
Canine and Animal) must implement all methods from
both Canine and Animal.

Click on view and follow link to header & footer to enter
Copyright and Author information : (A 21

The Dot Operator

The Dot operator (.) gives you access to an object’s
state and behavior.

//Make a new Object

Dog d = new Dog();

//Call the Dog’s bark method
d.bark();

//Set the size of the Dog
d.size = 40;

Click on view and follow link to header & footer to enter
Copyright and Author information

22

\

e e,

no

T
=
‘m

!
|

Objects in an ArrayList

i

» Objects come out of an ArrayList acting like they
are generic objects.

ArrayList

- _——

() (@) (&

Objects in an ArrayList

ArrayList al = new ArrayList();
Tiger t = new Tiger();
al.add(t);

//Make Tiger in ArrayList growl

1) Instantiate ArrayList object
2) Instantiate Tiger object
3) Add Tiger object to ArrayList

Click on view and follow link to header & footer to enter
Copyright and Author information

24

() (@) (&

Objects in an ArrayList 1hans
ArrayList al = new ArrayList();
Tiger t = new Tiger();
al.add(t);
//Make Tiger in ArrayList growl

Can you call the Tiger's makeNoise method here?

No. Only the methods in the Object class are
available at this point.

Click on view and follow link to header & footer to enter
Copyright and Author information

25

Casting an Object Reference Back to its
Real Type e
(1) Object o = al.get(index);
(2) Tigert = (Tiger) o;
(3) t.makeNoise();
1) Get the object from ArrayList

2) Generic object ‘0’ is casted to a Tiger
object and assigned to the ‘t’ reference
variable

3) The makeNoise() method of the Tiger
oot lCAASS 1S CANED

Copyright and Author information 26

:.La*“ﬁ.,
Review suARE

HC >

YEANS OF 1T EXCTLLENCE
jsnang.ons |

» Objects go into an ArrayList as the specified type
but come out as generic objects.

» To access the methods of the specific type, you
must cast the object to the specific object.

Click on view a and follow link to header &ft r 10 enter

*fa\‘ul

/f

Pet Shop Program

What if the Dog class that was written for any type
of dog was needed as a pet in another program?

The Dog class would need new pet-oriented
methods such as play(), sit(), rollover(), etc..

Let’s review three design options to make this
happen...

Click on view and follow link to header & footer to enter
Copyright and Author information : (A 28

Pet Shop — Design Option 1

Put pet methods in Animal class.

Pros
All Animals instantly inherit pet behaviors.
We won'’t have to touch existing Animal subclasses.
Any Animal subclass created in the future will get the pet methods.

Any program wanting to treat animals as pets can use the Animal class
as a polymorphic argument or return type.

Cons
ALL animals inherit pet behaviors even lions, tigers, and bears — oh, my!

There are sure to be changes required to the subclasses like Dog and
Cat because they would implement pet behaviors very differently.

Click on view and follow link to header & footer to enter
Copyright and Author information : (A 29

Pet Shop — Design Option 2 pLLLL

Put pet methods in the Animal class but make the
methods abstract, forcing the subclasses to override

them.

Pros
All the benefits of option1 are realized plus there would be no unwanted
animals with pet attributes.
The abstract methods that must be overridden can be empty.

Cons
Every subclass of Animal would have to have pet methods even if they
aren’t needed.
The existence of Pet methods in the subclasses would be misleading as
pet behaviors would be expected from those methods.

Click on view and follow link to header & footer to enter
Copyright and Author information ; 30

Pet Shop — Design Option 3

Put the pet methods only in the classes where
they belong.

Pros
The pet methods are only where they belong.

Cons

There is no way for other programmers to know what the protocol
for establishing or using pet behaviors and no way for the
compiler to make sure pet-like methods are implemented
correctly.

The Animal class could not be used as the polymorphic type
because the compiler will not let you call a pet method on an
Animal reference.

Click on view and follow link to header & footer to enter
Copyright and Author information : (A 31

Pet Shop — Best Design

Create two superclasses: Animal and Pet.
Give the Pet class all of the Pet methods.

Have subclasses that should use Pet methods
extend both the Animal and Pet classes.

Click on view and follow link to header & footer to enter
Copyright and Author information

32

