
Steve Ryder
08/23/05, Session 8352

JSR Systems (JSR)
sryder@jsrsys.com

Object Oriented Programming
Part II of II

2
Click on view and follow link to header & footer to enter
Copyright and Author information

Interfaces

���������	
��
���������

public interface Student {

public abstract void checkCredits();

}

���������
�����
���
���
�����������
��
����������

Student s;

S = new Student;

�����	
��
����������

Class MedStudent extends Student {

public void checkCredits();

}

3
Click on view and follow link to header & footer to enter
Copyright and Author information

Interfaces – A Closer Look

���
���������
��
�
���������
��
�
������

���
���������
��������
����
�
����������
��
��������������

��
��������
�����
��������
����������
����
��������������

����
��
���������
����
���
����
���	�������
��
��
����

��
���
����
���
��������
�����
���
���
���
	������
����

Student

MedStudent

An interface

4
Click on view and follow link to header & footer to enter
Copyright and Author information

Inheritance

•���
������
����
��
�
�����
������
� �����������

����
��

���
����
��������
������

•���
����
��������
�����
��
������
�
���������
•�
��������
� �����
��� �����������

Student

MedStudent LawStudent

Superclass
(abstract)

Subclass
(specific)

5
Click on view and follow link to header & footer to enter
Copyright and Author information

Inheritance – A Closer Look

•!���
�����������
���
�����������
��
����
���������"

�����
���	�������
����
��
����
��
���
���
‘#����’ ��

�������
��
���
���	���
��
���
�����

$���
�����
��

#���
��
����

•�%
& ����
���
�����
��
�
����
��������
����
��
�

�����������

•�%
– ����
���
����
��������
����
������
��

������
����	
��������
�������
��
���
����
	������

�����

•�%'’�
– (���
��
���
���
�����
����
����
�������

�����
��
���
������������
��������
������
��
���
���

�����
������

•�%'’�
– ��
���
��������
���
������������
���
����

���
)$&�
����

6
Click on view and follow link to header & footer to enter
Copyright and Author information

Inheritance – A Closer Look

*���
�����
��
�����������

+� ,��#
���
��(����
����
����
������
����������
���

����������

-� ����	�
�
�����
��
���������
������
����������

.� ������
��
�
��������
�����
��������
����������

/� ,��#
���
����
�������������
��
���
�����������
��

������	
���
��
����
����������
����
��	��
����

������
���������

0� *�����
���
�����
����������

7
Click on view and follow link to header & footer to enter
Copyright and Author information

Inheritance – A Closer Look

%��������	
�������
–

• !���
���
����	�
������������
���
����������"
�����

���
��
�����
����
���
��������
����
����
���
����

������
��
���
�����������

����
��
������
���������	�

•)�
����
���������"
���
������
���
���
������
�����
1���

����
��������
�����2
	���
�������

8
Click on view and follow link to header & footer to enter
Copyright and Author information

Inheritance – A Closer Look

LawStudent

�������)�

���
3
4

�������'���

$����	

����#�������12

SurgicalStudent

�������)�

���
3
4

�������'���

$����	

����#�������12

PediatricStudent

�������)�

���
3
4

�������'���

$����	

����#�������12

Student

�������)�

���
3
4

�������'���

$����	

����#�������12

MedicalStudent

�������)�

���
3
4

�������'���

$����	

����#�������12

9
Click on view and follow link to header & footer to enter
Copyright and Author information

Polymorphism

Three steps of object declaration and assignment
1. Declare a reference variable

Dog myDog = new Dog();

2. Create an object
3. Link the object and the reference

1

3

2

10
Click on view and follow link to header & footer to enter
Copyright and Author information

Polymorphism

Power references

• The reference and the object can be different

Animal myDog = new Dog();

11
Click on view and follow link to header & footer to enter
Copyright and Author information

Polymorphic Arrays

• Power references allow you to make
polymorphic arrays
Animal [] animals = new Animal[5];
animals[0] = new Dog();
animals[1] = new Cat();

for (int I = 0; I < animals.length; I ++) {
animals[i].eat();
animals[i].roam();

}

12
Click on view and follow link to header & footer to enter
Copyright and Author information

Arguments/Return Types

You can use polymorphic arguments and return
types….
class Vet {

public void giveShot(Animal a) {
//do vet stuff
a.makeNoise;

}
}

13
Click on view and follow link to header & footer to enter
Copyright and Author information

Overloading

• Overloading is having two methods with the
same name but different arguments.

• Overloaded methods have great flexibility:
1. Return types can be different as long as the arguments are

different types.
2. The return type can not be the only thing changed.
3. You can vary the access levels in any manner.

14
Click on view and follow link to header & footer to enter
Copyright and Author information

Abstract Classes

• Keep duplicate code to a minimum.

• Override generic methods.

• Flexible because of Animal subtypes that can be
designed in the future and used in any method
expecting an Animal object as an argument.

• Creates a common protocol for all animals that
are related to the Animal superclass.

15
Click on view and follow link to header & footer to enter
Copyright and Author information

Abstract Classes

Sample Animal class hierarchy

Animal

Wolf

Canine Hippo Reptile

16
Click on view and follow link to header & footer to enter
Copyright and Author information

Abstract Classes

Given the class design on the previous slide, the
following declarations are valid:

Animal aHippo = new Hippo();
Canine aWolf = new Wolf();
Wolf aWolf = new Wolf();

But what about this?
Animal anim = new Animal();

What would an Animal object look like?

Greep!
Greep!

17
Click on view and follow link to header & footer to enter
Copyright and Author information

Abstract Classes

• The Animal class is necessary for the inheritance and
polymorphism we’ve been covering. However …

• Programmers should only be able to instantiate the more concrete subclasses
like Wolf or Hippo because those have shapes, sizes, and behaviors that are
well-defined.

• To stop a class from being instantiated, make the class
abstract.

abstract class Animal

abstract class Canine extends Animal

18
Click on view and follow link to header & footer to enter
Copyright and Author information

Abstract Methods

• An abstract method must be overridden.

• An abstract method has no body.

public abstract void eat();

• If you declare a method as abstract, you must
declare the class abstract as well.

19
Click on view and follow link to header & footer to enter
Copyright and Author information

Abstract Methods

• What can an abstract method be used for?
• The point of an abstract method is that even without any actual

code, you still have defined part of the protocol for a group of
subclasses.

20
Click on view and follow link to header & footer to enter
Copyright and Author information

Abstract Methods

• What if there are two abstract classes in the
hierarchy?

• A subclass can ‘pass the buck.’
• If Animal and Canine are both abstract, the first concrete class

to extend Canine must implement all abstract methods from
both Animal and Canine.

21
Click on view and follow link to header & footer to enter
Copyright and Author information

Review

• Abstract classes and methods are useful for keeping
duplicate code to a minimum while maintaining a
protocol for a group of classes.

• An abstract class can not be instantiated. This forces
the programmer to instantiate only the more specific
(or concrete) subclasses.

• Abstract methods define the behaviors that all
subclasses must have. Each subclass has its own
unique way to implement the behaviors.

• The first concrete class in the hierarchy (Wolf from
Canine and Animal) must implement all methods from
both Canine and Animal.

22
Click on view and follow link to header & footer to enter
Copyright and Author information

The Dot Operator

• The Dot operator (.) gives you access to an object’s
state and behavior.

//Make a new Object

Dog d = new Dog();

//Call the Dog’s bark method

d.bark();

//Set the size of the Dog

d.size = 40;

23
Click on view and follow link to header & footer to enter
Copyright and Author information

Objects in an ArrayList

• Objects come out of an ArrayList acting like they
are generic objects.

ArrayList

Object Object Object

24
Click on view and follow link to header & footer to enter
Copyright and Author information

Objects in an ArrayList

ArrayList al = new ArrayList();

Tiger t = new Tiger();

al.add(t);

//Make Tiger in ArrayList growl

1) Instantiate ArrayList object

2) Instantiate Tiger object

3) Add Tiger object to ArrayList

1

2

3

4

25
Click on view and follow link to header & footer to enter
Copyright and Author information

Objects in an ArrayList

ArrayList al = new ArrayList();

Tiger t = new Tiger();

al.add(t);

//Make Tiger in ArrayList growl

Can you call the Tiger’s makeNoise method here?

No. Only the methods in the Object class are
available at this point.

1

2

3

4

26
Click on view and follow link to header & footer to enter
Copyright and Author information

Casting an Object Reference Back to its
Real Type

Object o = al.get(index);

Tiger t = (Tiger) o;

t.makeNoise();

1

2

3

1) Get the object from ArrayList

2) Generic object ‘o’ is casted to a Tiger
object and assigned to the ‘t’ reference
variable

3) The makeNoise() method of the Tiger
class is called

27
Click on view and follow link to header & footer to enter
Copyright and Author information

Review

• Objects go into an ArrayList as the specified type
but come out as generic objects.

• To access the methods of the specific type, you
must cast the object to the specific object.

28
Click on view and follow link to header & footer to enter
Copyright and Author information

Pet Shop Program

• What if the Dog class that was written for any type
of dog was needed as a pet in another program?

• The Dog class would need new pet-oriented
methods such as play(), sit(), rollover(), etc..

• Let’s review three design options to make this
happen…

29
Click on view and follow link to header & footer to enter
Copyright and Author information

Pet Shop – Design Option 1

• Put pet methods in Animal class.

• Pros
• All Animals instantly inherit pet behaviors.
• We won’t have to touch existing Animal subclasses.
• Any Animal subclass created in the future will get the pet methods.
• Any program wanting to treat animals as pets can use the Animal class

as a polymorphic argument or return type.

• Cons
• ALL animals inherit pet behaviors even lions, tigers, and bears – oh, my!
• There are sure to be changes required to the subclasses like Dog and

Cat because they would implement pet behaviors very differently.

30
Click on view and follow link to header & footer to enter
Copyright and Author information

Pet Shop – Design Option 2

• Put pet methods in the Animal class but make the
methods abstract, forcing the subclasses to override
them.

• Pros
• All the benefits of option1 are realized plus there would be no unwanted

animals with pet attributes.
• The abstract methods that must be overridden can be empty.

• Cons
• Every subclass of Animal would have to have pet methods even if they

aren’t needed.
• The existence of Pet methods in the subclasses would be misleading as

pet behaviors would be expected from those methods.

31
Click on view and follow link to header & footer to enter
Copyright and Author information

Pet Shop – Design Option 3

• Put the pet methods only in the classes where
they belong.

• Pros
• The pet methods are only where they belong.

• Cons
• There is no way for other programmers to know what the protocol

for establishing or using pet behaviors and no way for the
compiler to make sure pet-like methods are implemented
correctly.

• The Animal class could not be used as the polymorphic type
because the compiler will not let you call a pet method on an
Animal reference.

32
Click on view and follow link to header & footer to enter
Copyright and Author information

Pet Shop – Best Design

• Create two superclasses: Animal and Pet.

• Give the Pet class all of the Pet methods.

• Have subclasses that should use Pet methods
extend both the Animal and Pet classes.

