
Theresa Tai
March 2, 2005 (Session 8379)
zSeries New Technology Center

Poughkeepsie, New York
ttai@us.ibm.com

IBM Java Just-In-Time Compiler

2
Click on view and follow link to header & footer to enter

Copyright and Author information

Objectives

� Understanding the IBM Just In Time Compiler (JIT)

� The Mixed Mode Interpreter (MMI)

� Hints and Tips for isolating JIT problems

3
Click on view and follow link to header & footer to enter

Copyright and Author information

JIT Overview

� What does JIT compiler do?

� It dynamically generates machine code for frequently used bytecode
sequences in Java applications while they are running

� Purpose

� To improve performance by optimizing machine code execution

� Value

� Without JIT
• JVM starts up rather quickly but runs slowly

� With JIT
• JVM starts up with slight delayed but improve overall performance

� IBM SDK includes the JIT component

� IBM JVM is running with JIT enabled by default

� A comprehensive set of runtime and debug options available

4
Click on view and follow link to header & footer to enter

Copyright and Author information

JIT Technology

� Problem Statement
� The JVM interpreting bytecodes can’t match the performance of native applications
with machine code

� Need to improve the performance of JVM startup (interpreting/compiling) and Java
applications over the life of JVM

� Solution
� A compiler that will allow JVM to start reasonably quickly

� JIT code optimization processes

� Improve overall Java applications performance

� The Front-end
� Method analysis and optimization is common to all platforms

� The Back-end
� Machine code generation is z/OS specific

� The Other Half of JIT
� The introduction of MMI (Mixed Mode Interpreter)

5
Click on view and follow link to header & footer to enter

Copyright and Author information

A Glance at JIT and MMI

Java Applications

JVM (interpreter)

JIT

Compiler
native
code

byte
code

Supported

Platforms
Linux32

PPCIA-32 zSeries IA-64

OS/2 4690 AIX32 AIX64 Linux32 Linux64 z/OS Linux32 Linux64Win32 Linux64Win64

MMIMMI

JITC.DLL EXECJAVA

Threshold

6
Click on view and follow link to header & footer to enter

Copyright and Author information

MMI Technology

�Purpose:

� Designed to optimize the startup time and runtime performance
of Java applications

� Using a fast Assembler bytecode interpreter

�Value
� MMI only JIT compile Java methods that are frequently used
or execute over a long time

� Infrequently used methods which may not be compiled at all

�Threshold value

� Default threshold count 2000

� When count = 0, the method is JIT compiled

� MMI behavior can be changed by adjusting the threshold count value

� Must evaluate and track results to achieve optimal performance level

7
Click on view and follow link to header & footer to enter

Copyright and Author information

The JIT & MMI Operating Modes

Always interpret methods, runs in

interpretive mode only. The JVM starts up

quickly, but runtime performance is poor

OFFOFFJIT Disabled

JIT compile all methods immediately, JVM

starts slowly but performance is satisfactory

OFFONInterpreter

Disabled

Interpret Method and JIT compile, JVM start

reasonably quickly, improve overall

application performance

ONONDefault

EffectsMMIJITOperating

Mode

Note: When turning JIT off, the Interpreter does not invoke JIT translated code

8
Click on view and follow link to header & footer to enter

Copyright and Author information

Hints & Tips on Isolating JIT Problems

� Does it fail if JIT is disabled? export JAVA_COMPILER=

� Does it fail if MMI is disabled? java -Xcomp ...

� Compilation Failures
� Disable JIT and re-compile, if problem persist, not a JIT problem
� Remember to re-enable JIT
� Set IBM_MIXED_MODE_THRESHOLD=0 (Disabling MMI)

� Selectively Disabling JIT Based on Conditional Code Points
� Investigate and carefully pick-n-choose JIT compile options

• Narrowing down to a single option
� Mitigate performance hit all at once

� Workarounds are far less intrusive than –Xint (no JIT)

� Skipping a method does not mean it doesn’t run – it just doesn’t get compiled

� Reducing opt level of a method has minimal impact

� Workarounds are designed to provide relief while we work on a fix

9
Click on view and follow link to header & footer to enter

Copyright and Author information

JIT Compile Option Groups

� JITC_COMPILEOPT=NMMI2JIT

� MMI to JIT transfer process

� JITC_COMPILEOPT=NINLINING

� Tells JIT not to inline code

� JITC_COMPILEOPT=NQOPTIMIZE

� Disable all Quad optimizations

� JITC_COMPILEOPT=NALL

� Generate native machine code without any of the optimizations
(identify failing optimization by disabling all optimizations)

� JITC_COMPILEOPT=NOTHER

� Uncategorized options

� JITC_COMPILEOPT=NGLOBAL

� Not method-specific

10
Click on view and follow link to header & footer to enter

Copyright and Author information

Things You Want to Know About JIT

� You can not use non-IBM JIT with the IBM JVM

� JIT can not de-compile what is already JIT compiled code

� Do not replace the JIT that are packaged with the JVM

� You can set the JIT initial status only at JVM start-up time

� The JIT can be started up only at the same time as the JVM

� JIT is not part of JVM but it is loaded along with the JVM executables

� IBM continues to perfect the functions and features of JIT technology

11
Click on view and follow link to header & footer to enter

Copyright and Author information

Summary

� Tip: Avoid disabling JIT and/or MMI in a production environment

unless it is absolutely necessary

� Tip: Follow “process of elimination” approach to isolate problems

� Tip: Use the JIT compile options, debug options

� Tip: Use the IBM JIT Diagnostic Guide for problem determination and

rely on the IBM defect support staff for advice before turning off JIT

� Tip: If you require a quick startup for your applications and does

not care much about runtime performance –

Use the Xquickstart option

Note: http://www.ibm.com/developerworks/java/jdk/diagnosis/

12
Click on view and follow link to header & footer to enter

Copyright and Author information

� Verify JIT

� java –version (either JIT enabled or JIT disabled)

� -Xint option disables the JIT Compiler

� Java –Xint class

� Use binary reduction to narrow down to failing method (later methods are
most suspect so start by skipping second half)

� Dynamic slip trap
� JITC_DEBUGOPT=slip{class}{method(sig)}

� JIT can produce a limit file listing compilations:

java –Xjit:verbose,vlog=compiling.out MyClass my args

