< Fikg,

AEARY

4%
L .,.r:_ﬁ p—

SHARE

e, A

YEARS OF 1T EXCULLENCE

TS
"

.--"'F
SHARE
Trcnagiegy « Cormecticnn « Spatt

USEg
&

IBM Java Just-In-Time Compiler

Theresa Tai
March 2, 2005 (Session 8379)
zSeries New Technology Center
Poughkeepsie, New York
ttai@us.ibm.com

b,

G QUEES
"N User-Driven Training P ‘
Event & Expo S Y M POS 1 UM




Objectives

* Understanding the IBM Just In Time Compiler (JIT)

% The Mixed Mode Interpreter (MMI)

¢ Hints and Tips for isolating JIT problems

Click on view and follow link to header & footer to enter

Copyright and Author information

USEg




uEEy
\
v

JIT Overview

*%* What does JIT compiler do?
= It dynamically generates machine code for frequently used bytecode
sequences in Java applications while they are running

** Purpose
= To improve performance by optimizing machine code execution

*%* Value
= Without JIT
« JVM starts up rather quickly but runs slowly

= With JIT
» JVM starts up with slight delayed but improve overall performance
s IBM SDK includes the JIT component
s IBM JVM is running with JIT enabled by default
s A comprehensive set of runtime and debug options available

Click on view and follow link to header & footer to enter

Copyright and Author information




\

GWTS
o (

P
&

USEg
i\
iz 9

B
[

JIT Technology

*» Problem Statement
= The JVM interpreting bytecodes can’t match the performance of native applications

with machine code
= Need to improve the performance of JVM startup (interpreting/compiling) and Java

applications over the life of JVM

% Solution
= A compiler that will allow JVM to start reasonably quickly

= JIT code optimization processes
= |Improve overall Java applications performance

*» The Front-end

» Method analysis and optimization is common to all platforms
*» The Back-end

» Machine code generation is z/OS specific

* The Other Half of JIT
» The introduction of MMI (Mixed Mode Interpreter)

Click on view and follow link to header & footer to enter

Copyright and Author information




A Glance at JIT and MMI

Java Applications

. byte
JVM (interpreter) code
Y
JIT native MMI
C iler | code T
ompl Threshold
JITC.DLL EXECJAVA
Supported | . . . . . . .
Win32 Linux32 0Ss/2 4690 AIX32 AlX64 Linux32 Linux64 z/OS Linux32 Linux64 Win64 Linux64
Platforms
IA-32 PPC zSeries |A-64

Click on view and follow link to header & footer to enter

Copyright and Author information




uEEy
\
v

MMI Technology

¢ Purpose:
» Designed to optimize the startup time and runtime performance

of Java applications
» Using a fast Assembler bytecode interpreter

»Value
= MMI only JIT compile Java methods that are frequently used
or execute over a long time
* Infrequently used methods which may not be compiled at all

+» Threshold value
= Default threshold count 2000

* When count = 0, the method is JIT compiled
= MMI behavior can be changed by adjusting the threshold count value

» Must evaluate and track results to achieve optimal performance level

Click on view and follow link to header & footer to enter

Copyright and Author information




£
The JIT & MMI Operating Modes SHARE
[ s HaRE.ORG ]
Operating JIT MMI Effects
Mode
Default ON ON Interpret Method and JIT compile, JVM start
reasonably quickly, improve overall
application performance
Interpreter ON OFF | JIT compile all methods immediately, JVM
Disabled starts slowly but performance is satisfactory
JIT Disabled OFF OFF | Always interpret methods, runs in
interpretive mode only. The JVM starts up
quickly, but runtime performance is poor

Click on view and follow link to header & footer to enter

Copyright and Author information

Note: When turning JIT off, the Interpreter does not invoke JIT translated code




uEEy
\
v

Hints & Tips on Isolating JIT Problems

s Does it fail if JIT is disabled? export JAVA COMPILER=

¢ Does it fail if MMI is disabled? java -Xcomp ...

s Compilation Failures
= Disable JIT and re-compile, if problem persist, not a JIT problem

» Remember to re-enable JIT
» Set IBM_MIXED MODE_THRESHOLD=0 (Disabling MMI)

¢ Selectively Disabling JIT Based on Conditional Code Points
» Investigate and carefully pick-n-choose JIT compile options

« Narrowing down to a single option
» Mitigate performance hit all at once

% Workarounds are far less intrusive than —Xint (no JIT)
% Skipping a method does not mean it doesn’t run — it just doesn’t get compiled

*» Reducing opt level of a method has minimal impact
s Workarounds are designed to provide relief while we work on a fix

Click on view and follow link to header & footer to enter

Copyright and Author information




JIT Compile Option Groups

» JITC_ COMPILEOPT=NMMI2JIT
= MMI to JIT transfer process

» JITC_COMPILEOPT=NINLINING
= Tells JIT not to inline code

“ JITC_COMPILEOPT=NQOPTIMIZE

= Disable all Quad optimizations

JITC_COMPILEOPT=NALL
» Generate native machine code without any of the optimizations
(identify failing optimization by disabling all optimizations)

»JITC_COMPILEOPT=NOTHER
» Uncategorized options
» JITC_COMPILEOPT=NGLOBAL
» Not method-specific

Click on view and follow link to header & footer to enter

Copyright and Author information




Things You Want to Know About JIT

¢ You can not use non-IBM JIT with the IBM JVM
*» JIT can not de-compile what is already JIT compiled code

¢ Do not replace the JIT that are packaged with the JVM
¢ You can set the JIT initial status only at JVM start-up time

s The JIT can be started up only at the same time as the JVM
s JIT is not part of JVM but it is loaded along with the JVM executables

“ IBM continues to perfect the functions and features of JIT technology

Click on view and follow link to header & footer to enter

Copyright and Author information

10




uEEy
\
\d

SHARE
Ihadiogy + Conmenidns = Bnaty

Summary

% Tip: Avoid disabling JIT and/or MMI in a production environment

unless it is absolutely necessary
*» Tip: Follow “process of elimination” approach to isolate problems

¢ Tip: Use the JIT compile options, debug options

 Tip: Use the IBM JIT Diagnostic Guide for problem determination and
rely on the IBM defect support staff for advice before turning off JIT

* Tip: If you require a quick startup for your applications and does
not care much about runtime performance —

Use the Xquickstart option
Note: http://www.ibm.com/developerworks/javal/jdk/diagnosis/

Click on view and follow link to header & footer to enter

Copyright and Author information

11




uTS
*‘

¥

P
o

USEg
i\
iz 9

B
[

s Verify JIT
= java —version (either JIT enabled or JIT disabled)

s -Xint option disables the JIT Compiler
» Java —Xint class
* Use binary reduction to narrow down to failing method (later methods are

most suspect so start by skipping second half)
* Dynamic slip trap
» JITC_DEBUGOPT=slip{class}{method(sig)}

+* JIT can produce a limit file listing compilations:
Java —-Xjit:verbose,vlog=compiling.out MyClass my args

Click on view and follow link to header & footer to enter

Copyright and Author information

12




