- .-FHE
SHARE
e SHARE
:___. -h{--—_ } Techagirgy « Codwaciions « Reysit
YEARS OF T IMEPLLEMNGE
i e are o0rc] [sHARE. ORG]

JAVA Hints and Tips, Part 1
Finalizers

Kenneth lrwin

Session 8379

March 2, 2005
Irwink@us.ibm.com

_)SHARE [wE=w
"’ User-Driven Training P B
S Y M PO ST U M

| Event&Expo

03/07/05

Objectives

e An introduction to Garbage Collection and Finalizat
e Problems associated with Finalization

e Hints and tips for avoiding these problems

03/07/05

Agenda

e What are Finalizers
e Something about Java and Garbage Collection
e From the Application perspective
e From the Implementation (JVM) perspective

e Problems associated with Finalizers
e |ncreased Java Heap occupancy
e Resource exhaustion

e Hints and tips for avoiding these problems
e Implementing a synchronous close method
e ‘Forcing’ Finalization
e The Weak reference alternative

03/07/05

f ‘##

)

SHARE
Technasagy - Connechess - Retuis

—

Something about java and Garbage Collection

e Objects are created explicitly
classA objectA = new classA();
and are allocated in a contiguous storage areadoctile java heap.

e There is no command in java to free this storageh as:
free objectA,

e When the java heap is full the jvm invokes a pssagalled ‘Garbage
Collection’ which marks storage occupied by unrefeed objects as
available for reuse.

03/07/05

Finalizers from the application perspective

public classClassA

{

protectedvoid finalize ()

{

/[/[some statements

}
}

e The finalize() method is run when there are no meferences to the object.

e Finalizers provide a chance to free up resourassh(as file descriptors or
operating system graphics contexts) that cannfreleel automatically by an
automatic storage manager.
http://java.sun.com/docs/books/jls/first_editiomihitL2.doc.html

03/07/05

Finalizers from the JVM perspective

Application Program

(Stack) Java Heap
» ObjectA <=w
Finalizer of
ObjectA
» ObjectB
Finalizer
Queue

03/07/05

Verbosegc output

<AF[7]. Allocation Failure. need 20016 bytes, 5 snsce last AF>
<AF[7]: managing allocation failure, action=1 (148394025056)
(167712/167712)>

<GC(7). GC cycle started Sun Jul 04 01:04:53 2004

<GC(7): freed 2824952 bytes, 74% free (3136648468), in 3 ms>

<GC(7): mark: 3 ms, sweep: 0 ms, compact: 0 ms>

<GC(7): refs: soft O (age >= 32), weakifal 141, phantom 0>
<AF[7]: completed in 36 ms>

03/07/05

Problems with Finalizers

e |ncreased Java Heap occupancy

e Finalizers delay object collection for an undefine
period.

e Causing degradation on GCs key performance
measures:

e Pause time (increased mark phase, mark stack
overflow)

e Time between GCs reduced (less free space)

03/07/05

Problems with Finalizers

e Resource exhaustion
e One of the uses of Finalizers Is to ‘free’
system resources such as native storage or file
handlers.

e ... but there is no guarantee that finalizers
will run.

03/07/05

Hints and Tips for avoiding problems with B =
Finalizers

¢ If you must use them:

e Keep their content to a minimum.
Finalizers are run on a single thread and

sequentially so a long running finalizer

will ‘block’ other finalizers from being
run

e Consider the alternatives ...

03/07/05

Hints and Tips for avoiding problems with ~ Y
Finalizers srant

® Use of a synchronous close() method

e |f the application is able to determine that ajecbwill no

longer be used free resources using a synchroctnse()’
method.

e |n the finalizer check that resources have besedfr

e This approach will alleviate the resource exhaumsti
problem.

03/07/05

Hints and Tips for avoiding problems with
Finalizers

e ‘Forcing’ finalization

® Even if there are no references to an object, G€qgsired to
recognise this and enqueue the object’s finalieéorie it can be run.

e |tis possible for resources to be exhausted beddBC Is (ever)
run.

® Finalizers can be enqueued for finalization anditiedizers run
synchronously from the application using:

System.gc(); //callsa GC
System.runFinalization(); // this thread acts madditional finalizer thread

e This has performance implications

03/07/05

Hints and Tips for avoiding problems with -1
Finalizers SHARE

e The Weak Reference Alternative
http://java.sun.com/developer/technicalArticles/AR€fODb)/
®

Application Program
(Stack)

WeakReference

|

I anObject

ReferenceQueue

03/07/05

Summary

e Garbage Collection enqueues an object’s finalizsewthere are no
longer (strong) references to the object.

e A finalizer frees up resources which can’t be freapcautomatically

e Reading the verbosegc output from an IBM JVM

e Problems with finalizers: resource exhaustion afdpgrformance

e Tip: Keep finalizer content to a minimum

e Tip: Consider using a synchronous close() methodré®ing resources
e Tip: Finalization can be ‘forced’

e Tip: WeakReferences can be used for notificatioolpéct collection

03/07/05

