
JAVA Hints and Tips, Part 1
Finalizers

Kenneth Irwin
Session 8379

March 2, 2005
irwink@us.ibm.com

03/07/05

Objectives

An introduction to Garbage Collection and Finalization

Problems associated with Finalization

Hints and tips for avoiding these problems

03/07/05

Agenda

 What are Finalizers
 Something about Java and Garbage Collection
 From the Application perspective
 From the Implementation (JVM) perspective

 Problems associated with Finalizers
 Increased Java Heap occupancy
 Resource exhaustion

 Hints and tips for avoiding these problems
 Implementing a synchronous close method
 ‘Forcing’ Finalization
 The Weak reference alternative

03/07/05

Something about java and Garbage Collection

 Objects are created explicitly
 classA objectA = new classA();
and are allocated in a contiguous storage area called the java heap.

 There is no command in java to free this storage, such as:
 free objectA;

 When the java heap is full the jvm invokes a process called ‘Garbage
Collection’ which marks storage occupied by unreferenced objects as
available for reuse.

03/07/05

Finalizers from the application perspective

public class ClassA
{
 …

 protected void finalize ()
 {
 //some statements
 }
}

 The finalize() method is run when there are no more references to the object.

Finalizers provide a chance to free up resources (such as file descriptors or
operating system graphics contexts) that cannot be freed automatically by an
automatic storage manager.
http://java.sun.com/docs/books/jls/first_edition/html/12.doc.html

03/07/05

Finalizers from the JVM perspective

…

ObjectB

Finalizer of
ObjectA

Application Program
(Stack)

Java Heap

ObjectA

Finalizer
Queue

03/07/05

Verbosegc output

<AF[7]: Allocation Failure. need 20016 bytes, 5 ms since last AF>
<AF[7]: managing allocation failure, action=1 (143984/4025056)

(167712/167712)>
 <GC(7): GC cycle started Sun Jul 04 01:04:53 2004
 <GC(7): freed 2824952 bytes, 74% free (3136648/4192768), in 3 ms>
 <GC(7): mark: 3 ms, sweep: 0 ms, compact: 0 ms>
 <GC(7): refs: soft 0 (age >= 32), weak 0, final 141, phantom 0>
<AF[7]: completed in 36 ms>

03/07/05

Problems with Finalizers

 Increased Java Heap occupancy

 Finalizers delay object collection for an undefined
period.

 Causing degradation on GCs key performance
measures:

 Pause time (increased mark phase, mark stack
overflow)

 Time between GCs reduced (less free space)

03/07/05

Problems with Finalizers

Resource exhaustion

 One of the uses of Finalizers is to ‘free’
system resources such as native storage or file
handlers.

 … but there is no guarantee that finalizers
will run.

03/07/05

Hints and Tips for avoiding problems with
Finalizers

 if you must use them:

 Keep their content to a minimum.
Finalizers are run on a single thread and
sequentially so a long running finalizer
will ‘block’ other finalizers from being
run

 Consider the alternatives …

03/07/05

Hints and Tips for avoiding problems with
Finalizers

 Use of a synchronous close() method

 If the application is able to determine that an object will no
longer be used free resources using a synchronous ‘close()’
method.

 In the finalizer check that resources have been freed

 This approach will alleviate the resource exhaustion
problem.

03/07/05

Hints and Tips for avoiding problems with
Finalizers

‘Forcing’ finalization

 Even if there are no references to an object, GC is required to
recognise this and enqueue the object’s finalizer before it can be run.

 It is possible for resources to be exhausted before a GC is (ever)
run.

 Finalizers can be enqueued for finalization and the finalizers run
synchronously from the application using:

System.gc(); // calls a GC
System.runFinalization(); // this thread acts as an additional finalizer thread

 This has performance implications

03/07/05

Hints and Tips for avoiding problems with
Finalizers

The Weak Reference Alternative
http://java.sun.com/developer/technicalArticles/ALT/RefObj/

WeakReference ReferenceQueue

anObject

Application Program
(Stack)

03/07/05

Summary

Garbage Collection enqueues an object’s finalizer when there are no
longer (strong) references to the object.
A finalizer frees up resources which can’t be freed up automatically
Reading the verbosegc output from an IBM JVM
Problems with finalizers: resource exhaustion and GC performance
Tip: Keep finalizer content to a minimum
Tip: Consider using a synchronous close() method for freeing resources
Tip: Finalization can be ‘forced’
Tip: WeakReferences can be used for notification of object collection

03/07/05

