Lab 3 Creating a ‘Hello World’ Plug-in

1. Select File>New>Project from the menu bar and select the options as shown and click on the
‘next’ button.

& New Project &

Select & &
Create a Plug-in Project ﬁ
- Java “£-Plug-n Project
Plug-in Development ¢ Fragment Project
- Gimple @‘Featﬂe Project
@\ Update Site Project

= Back I Mext = I Finish Cancel

2. Enter the project name: ‘org.example.helloworld’ and select the Next button.

= New Plug-in Project &
Plug-in Project Name
Select the name of the new plug-in project {e.g. 'com.example.xyz’). By default, this @

name will also be uzed for the plug-in ID.

Project name: I org.example.helloworld|

Project contents
¥ Use default

Direckory: |C:'.—.:-: cations\edipseworkspaceiorg.example. helloworld Browse. ., |

< Back I Next = I Fimish Cancel

3. In the next window define the plug-in structure as follows:

a. Java builder output specifies where Eclipse places the generated class files.
b. Plug-in runtime library specifies the JAR file that contains your Java code.
c. Source folder lets you specify the subdirectory where the Java files of your
project are to be kept.

"B New Plug-in Project =

Plug-in Project Structure
Define essential plug-in structure settings @

Plug-in Id: | org.example.helloworld

" Create a simple project
¥ Create a Java project

Java builder output: | bin

Plug-in runtime library: I helloworld. jar

Source folder: I s

< Back I Mext = I Firiish Cancel

4.The next window enables you to select the plug-in code generator.
Firstly enable Create a plug-in project using a code generation wizard.
In the case of ‘Hello World’ a sample code generator is supplied. Select this.
Select next.

= New Plug-in Project

Plug-in Code Generators

Select the wizard that will generate the initial plug-in code @

" Create a blank plug-in project
' Create a plug-in project using a code generation wizard

Available code generation wizards

@“.Cusb:um plug-n wizard This wizard creates standard plug-in

. In Structure directory structure and adds the following:
i * Action set. This template creates a
@ L) simple action set that adds Sample

> Plug-in with & multi-page editor Menu to the menu bar and a button
@Plug-in with an editor to the tool bar. Both the menu item in
.@F‘Iug-in with a popup menu the new menu and the button invoke

.@Plug-in with a property page the same Sample Action. Its role iz
to open a simple message dialog with a
-@F"UEHI'I with a view message of your choice,

.@Plug-in with perspective extensions Extensions Used

* org.edipse.ui.actionSets

= Back I Mext = I Finish Cancel

5. Fill in the fields to define the plug-in content as below and select Finish

3

= New Hello World plug-in project &

Simple Plug-in Content

Enter the required data to generate initial plug-in files E

Plug-in name: I Helloworld Plug-in

Version: I 1.0.0

Provider Mame: I SHARE

Class Mame: I org.example. helloworld HelloworldPlugin

¥ Generate code for the dass

Flug-in code generation options
v Add default instance access
v add support for resource bundles
|+ Add access to the workspace

< Back Mext = | Finish I Cancel

6. Enable needed plug-ins

Bl New Hello World plug-in project X

Simple Plug-in Content

Enter the reguired data to generate initial plug-in files E 1
=

P|Llf|‘,i"""" e | Bl B yrin

& New Hello World plug-in project % |-

Wer

Plug-ins required to compile Java dasses in this plug-in are currently disabled.

Pra B z . :
The wizard will enable them to avoid compile errors,

la

Plug-in code generation options
¥ add default instance access

¥ | sdd|support For resource bundles
¥ &dd access ko the workspace

= Back Mk = | Firishy I Cance|

6. The plug-in has been created. The file structure ...

ﬁ.Padagquﬂnrerd:Ebt|E\.?va

- T jorg.example. helloworld;

EE org.example.helloworld
m HelloworldPlugin java
=-f# org.example.helloworld.actions

m SampleAction.java
{Eﬁ ECLIPSE_HOME fplugins forg.edipse. core.resources_|
{Eﬁ ECLIPSE_HOME fpluginsforg.edipse.ui_2.0. 2 fworkbe
{Eﬁ ECLIPSE_HOME fplugins forg.edipse.ui.win32_2.0.0/4
{Eﬁ ECLIPSE_HOME fplugins forg.edipse.swt.win32_2.0.]
+ {Eﬁ ECLIPSE_HOME fpluginsforg.edipse, core.runtime_2,
' {Eﬁ ECLIPSE_HOME fpluginsforg.edipse, core.boot_2.0.3
[+l JRE_LIB - C:\Program Files\IEM\Java 131jrelib'rt.jz
: {=F icons
o hyild, properties

plugin, xml

7. The plug-in can be run either by deploying the created files into the plug-ins directory, which
is the subject of Lab 4, or run in a new spawned Eclipse image. The second approach is used
for plug-in development and is described here:

1
I
\

o =

Build your project: Select Project > Rebuild All.
Select Run > Run As > Run-time Workbench. A new Workbench appears

that includes your new plug-in menu and toolbar button.
3. Click on the toolbar button and a dialog box comes up with message "Hello,

Eclipse World."

' Resource - Welcome - Eclipse Platform

@

{13

x|

[-gaala-]sece -

ﬁ 5 Navigator v X elcome. | 3¢ |
Bylle = & | & £ Eclipse Platform
This page will helo famiiarize vou with the Edinse Workbench

& Helloworld Plug-in

&

@ Hello, Edlipse world

e Help > Welcome...

views (e g, Navigator)

8= Outline x

Wn outline is not available.
(3] Configuring your perspectives
<] I

I The shortcut bar at the far left of the window allows you to open new perspectives and move
between perspectives that are already open. The perspective you are currently warking with
is shown in the title of the window and in the shortcut bar as a pushed-in icon.

7 Tasks (0 items)

| JI ! I Description I Resource

| In Folder

