Java Development with Eclipse
Lab 2 The debug Perspective

1. Debugging functionality

1. In the Resource perspective open the Runlt class in the java window.
2. Enter Run>Debug and the following window is displayed :

= Debug &

Create, manage, and run configurations

Configurations:
o E Attach to a Running Proc
By Debug a Compiled Applic

M8 Java Applet

MName: I CommandLine

@ main |M= Argumentsl i JREI T4 Classpathl Source I ﬁ Commonl

Project:

I Lab Browse...
HelloWorld
HelloWorldApp
HelloWorldApp (1)
Marathan
Marathon (1) ¥ Indude external jars when searching for a main dass
:Ie;\'_conﬁgurahon (o
Palynomial (1)
recapl

L F) recap
w g JUnit
=S Remote Java Application
; - i{ Java Application
-4 Run-time Workbench
-4 New_configuration
L4 Run-time Warkbench

Main class:

| eclipselab.RunIt Search...

Mew | Delete | Apply | Fewert |

Debug I Close |

This is the debug configuration

3. ‘Click’ on the Argument tab and enter ‘hello’ in the ‘Program Arguments’ panel. See below.

& Debug X<}

Create, manage, and run configurations

Configurations: MName: I CommandLine

- b Attach to a Running Proc
By Debug a Compiled Applic;
£ Java Applet @ main = Arguments |m JREI Tl Classpaml Source I 3F Commonl

£J Java Application
P S

Program arguments:

FilePrinter
Hash hello
Hello\World
HelloWorldApp
Helloworldapp (1)
Marathon
Marathon {1)
Mew_configuration (-
MIO
ZJ Polynomial (1)
--ZJ recapl
-5 recapl
o Jy it VM arguments:
= :E. Remate Java Application -verbosege
¢ 3 3ava Application
EI& Run-time Workbench
% Mew_configuration
4 Run-time Workbench

Working directory:
= Localdirectory:l Browse,,, |
% ‘Workspace: I’.-‘;c- Browse, |
V¥ Use default working directory
£ I Y
MNew | Delete | Apply | Revert: |

4.°Click’ on the ‘Debug’ button.
This opens the ‘Debug’ Perspective shown in the current slide in the presentation.
The Runlt application is being executed and is suspended at the first instruction.

The blue arrow in the margin and the greyed line indicate where the programs is suspended.

* To change the template for this generated type
* Windowsgt;Preferences>Javasgt;Code Generatio
*f

public class RunIt {

public static void main(String[] args) {
» int i=0;
System.out.println("Lakb 1™);
while (i++ < 1000) {
i MemGrab aGrakb = new MemGrab():

5. Look at the other windows in the debug perspective
In the threads window the Runlt thread is suspended at line 20
In the attributes window’s variables tab the only known ‘variable’ the program argument
‘hello’ is displayed.
Try ‘opening’ the ‘args’ variable and see the various components of a String array exposed.

)= Variables
=l & args=5tring[1] {id=15)
B & [0]= hello™
b @ COUNt= 5

hash=0
offset=10
~@ value= char[5] {id=22)
& [0]=h
o4 [1]=e
...... a [A=I
...... a [A=I
b s [M=o

[hello]

Variables]Erealq:loints |Registers | Storage | Storage Mapping | Monitors |Madules |Displa1,-'

6. Click on the run menu option and see the debugging functionality now enabled:
Resume, terminate, step with filters, step into ...

t Run Window Help

j [P Resume Fa
7| 00 Suspend ke
|_ H Terminate
tit 9 Step with Filters shift+F5
H 9 StepInto F5
= Step Cver F&
_I* Step Return F7
A
N %, Run Last Launched Cirl4F11
% Debug Last Launched F11
¥8 Run History »
Run As 3
Run...

7. ‘Click’ on ‘Step Over’. The variable ‘i’ now appears in the variable tab:

=)= Yariables

=l @& args=5tring[1] (id=15)
= [0]="hello”

s @ Count= 5

5 hash=10

...... @ offset=0

B~ @ wvalue= char[5] (id=22)
a [=h
o a [l=e
...... a [A=1
s [F=I
b s M=o

...... m i=0
[hello]

8. “Click’ on ‘Step Over’ or press F6 until ‘i’ is 10.
See how the program is executing 1 line at a time.

9. Step through the program until the execution is suspended at line
MemGrab aGrab = new MemGrab () ;

Now enter F5 or ‘Step Into’ and see the program suspend in the MemGrab() constructor.
In the thread window the java stack can be seen. Runlt.main(String[]) method calls
MemGrab.<init>() method,

-8 System Thread [Signal dispatcher] (Running)

148y Thread [main] (Suspended)

= MemGrab, <init>() line: 18

- RunIt.main(String[]) line: 23

b C:\Applications\1DKsava141\bin'javaw.exe (10/07/04 23

10. Now enter F7 or ‘Step Return’ to return to the Runlt.main method.

11. Place the cursor over ‘i’ in the variable tab and ‘double click’ to relieve the following
window. ‘1’ can now be changed. Change it to ‘82’ and click on OK.

&

& Set Variable Value x|

Enter a new value for i:

24

oK I Cancel

12. Step through the program until the execution is suspended at line
MemGrab aGrab = new MemGrab();

Now depress the Ctrl + Shift + b keys. A breakpoint has been set at this source code line.
Now enter F8 or ‘Resume’, program execution now proceeds to the next breakpoint.
Enter F8 a few times and each time see ‘i’ incremented to indicate that a whole loop
Iteration has been executed.

13. Click on the ‘breakpoints’ tab to see the breakpoint added in section 12.

14. Try ‘hot code replacement’. Suspend the java application on a breakpoint. Modify
the code, for example, change Runlt.java with the following 1 line addition:

int i=0;

System.out.println ("Labl");

while (i++ < 1000) {
MemGrab aGrab = new MemGrab () ;
i++;

}

Enter ‘Ctrl s’ to save Runlt.java. If you have automatic compilation enabled Runlt.java
will be recompiled. Continue editing the application. You have changed the application
code during an execution. Stepping through notice how I is incremented twice in each
loop body as a result of this code modification.

15 To end the lab select either the terminate debug menu option or continue stepping though
the code.

