8353
Java from the Very Beginning, Part Il

Jezz Kelway
Java Technology Centre, z/OS Service.
IBM Hursley Park Labs, United Kingdom

SHARE

Objectives

e[earn and understand Java's basic flow of control
constructs

*Get some more hands on experience

Agenda

*Part | recap

eConditional statements
eif..then..else
eswitch

eL_ooping constructs
*Arrays
efor
ewhile
edo..while

*Exception handling

Recap

*\Which of the following identifiers are valid?
*A) BigOlLongStringWithMeaninglessName
*B) $int
*C) bytes
D) $1
*E) finalist

Recap

*\What is the range of values that can be assigned to a
variable of type short?

*A) O through 361

*B) 0 through 521

C) -215through 391

D) -231through 11

*E) It depends on the underlying hardware

Recap

*\What are the values of x,a and b after executing the
following code?

Int X, a=6, b=7;
X = a++ + b++;

*A)x=15,a=7,b=8
‘Byx=15,a=6,b=7
C)x=13,a=7,b=8
D)x=13,a=6,b=7

Agenda

SHARE

 Partlrecap

=» Conditional statements
oif..then..else
eswitch

e Looping constructs
*Arrays
efor
while
edo..while

* Exception Handling

'
If...then...else cHARE
If (boolean_expr) { : if (a>10) {
then_stmnts; System.out.printin("a > 10");
} }

*Tests against boolean expression
(not integer as in C/C++).

=Curly braces delimit blocks of code { }

=|f the condition Is true, then the
statements in the then block are
executed.

If...then...else SHARE

if (expr) { If (a<10){

then_stmnts; |:> System.out.printin("a < 10");
} }
else{ else {

else_stmnts; System.out.printin("a >= 10");
} }

=|f the condition Is false, then the
statements in the else block are
executed.

If..then..else

If (expr) {
then_stmnts;

}

elseif (expr_1) {
else_stmnts;

}

else{
else_stmnts;

—>

Int testscore;
char grade;

If (testscore >= 90) {
grade ="A’;

} else if (testscore >= 80) {
grade ='B';

} else if (testscore >= 70) {
grade = 'C’;

} else if (testscore >= 60) {
grade = 'D';

}else {
grade ="'F';

}

switch

*Used to make a choice between multiple alternative
execution paths

*Choice must be based on an integer type (byte, short,
char or int)

B
switch SHARE
eswitch (Int_expr){ eswitch (grade) {

ecase X: ecase ‘A’
ecase X stmnts *System.out.printin("Outstanding!")
*break; *break;

ecasey: ecase 'B"
ecase y stmnts e System.out.printin(*Well done")
obreak; :> -break;

ecase 7 ecase 'C".
ecase z stmnis e System.out.printin("Satisfactory")
ebreak: *break;

edefault: edefault:
edefault case stmnts eSystem.out.printin("Fail’;)
*break; *break;

°} °}

switch

*The "default" case Is optional

*The "break" statement Is optional, If it Is omitted,
execution drops through to the next case

ea common source of errors!

switch

eswitch (grade) {

ecase ‘A"

ecase 'B"

ecase 'C"
eSystem.out.printin("Pass")
*break;

edefault:
e System.out.printin("Fail")
*break;

Agenda

SHARE

 Partlrecap

e Conditional statements
oif..then..else
eswitch

=»Looping constructs
*Arrays
efor
while
edo..while

* Exception Handling

Arrays

*Declare asype]] varName;
e int[| mylnts;

*Must allocate memory before use:
* mylnts = new Int[10];

=General form:
f elementType[] arrayName = new elementType[arraySize |;

Arrays

*Array indices always start at zero.

*Access array elements using []:
myArray[0] = 5;

eSpecial array propertgngth
emyArray.length

Arrays

eint [] squares #ew int[5];

*SC
*SC
*SC
*SC

*SC

uares
uares
uares
uares
uares

RIS R

For loops

for (initialisation ; continuation_expr ; increment) {
loop _stmnts;

}

=>initialisation executed once at beginning

=>increment executed each time round the loop, imatelg after the
body of the loop

=>»continuation_expr is evaluated at the top of tloglon every iteration.
The loop terminates when continuation_expr is false

For loops

Initialization

Continuation
Expression

false

Loop Statements

Increment

SHARE

For loops

Int I;

for (I=0 ;i< 10;i++){

—>

System.out.printin("i =" +i);

}

common shorthand:

for (inti=0 ;i< 10 ; i++){

}

System.out.printin("i =" +i);

21=0
21=1
21=2
...

21=9

Exercise

*Print out the command line arguments to a Java
program

A Solution

/**

* A Java application to list the command line argunts
*/
class CommandLine {

public static void main(String [] args) {
for (int 1 = 0; I < args.length; i++) {

System.out.printin("Argument " + 1+ " =" + argg|I

}

} I/ end of main method

} I/ end of class

&
While Loops cHARE
while (boolean_expr) { inti=0;
stmnts; o
1 while (i < 10) {
System.out.printin("i =" + 1);
|++:

expr evaluated at top of each loop)
body executed If expr evaluates to true

make sure your loop terminates! 21=0
2i=1
21=2
...

While Loops

Boolean
Expression

Loop Statements

Do Loops

do {

stmnts;
} while (boolean_expr);

body executed each time through the loop
boolean_expr is evaluated at the end of the loop
body of the loop is always executed at least once

|:> INnt1=0;

g =
ananRs
do {
System.out.printin("i =" + 1);
I++:
}while (1<10);
21=0
2i=1
2i=2
..
21=9

Do Loops

Loop Statements

Boolean
Expression

Continue

*Used to abandon execution of the body of a loop, or a
number of nested loops

*A "structured" form of goto...

for (inti=0;i<array.length; i++) {
if (larray[i].needsProcessing()) {
continue;

}

/[process element...

}

Continue

*Use labels for nested loops
*Can label opening statement of do, while and for loop:

mainLoop: for (inti=0; i< array.length; i++) {
for (intj=0; < array[i].length; j++) {
if (larray[i][]j].needsProcessing()) {
continue mainLoop;
}
/[process element...
}
}

Break

[_ike continue, but abandons entire loop instead of
current iteration

eCan also use labels on break statements
for (Int1=0;1<array.length; i++) {
If (array[1]==0){
break; // stop processing at first zero entry

}

// process element...

}

Agenda

SHARE

 Partlrecap

e Conditional statements
oif..then..else
eswitch

e Looping constructs
*Arrays
efor
while
edo..while

=>» Exception handling

Exceptions and Error Handling

*"An exception Is an event that occurs during the
execution of a program that disrupts the normal flow o
Instructions”.

*\When an error occurs within a block of code:

=>» An exception is created containing information &libe error
=> The exception is passed to the runtime system

=>» The runtime system searches backwards throughathstack to
find an exceptiomandler

=>if a handler is found, control passes to the handlsee the
program exits

Catching Exceptions

eSurround code which may cause an error in a try bloc
and place one or more catch blocks after it

FileReader fileReader;

try {
fileReader = new FileReader("input.txt");
/l read from file etc...

fileReader.close(); // done!

}

catch (FileNotFoundException notFoundEx) {
/l handle file not found

}

catch (IOException ioEX) {
// handle error closing file

}

And Finally

A finally block may follow a try and its associated catc
blocks

*The code in the finally block will always be executed

try {

}
catch (...){}

catch (...) {}
finally {
// tidy up code...

}

Exercise

eImprove the "FilePrinter" program so that it handles
errors gracefully.

A Solution

FileReader fileReader = null; // declare outsidéhefscope of the try block

try {
fileReader = new FileReader(fileName);

int c;
while ((c = fileReader.read()) !'=-1) {
System.out.print((char)c);

}

}
catch (FileNotFoundException notFoundEx) {

System.out.printin("Could not open " + fileName);
}
catch (IOException i0EX) {
System.out.printin("Error reading from " + fileNajne
}
finally {
System.out.printin();
if (fleReader != null) {
try { fileReader.close(); }
catch (IOException ioEX) { ; } // nothing we can dow!

}

Summary

*Two main forms of conditional constructs:

oif..then...else
eswitch

*Three looping constructs
for, do, while
*Error handling via try, catch, finally

