S$8352: Java From the Very Beginning Part | - Exercises
Ex. 1 Hello World

This lab uses the Eclipse development environment which provides all of the tools necessary
to build, compile and run Java applications. The lab instructor will demonstrate how to load
Eclipse on the lab machines.

To import the exercises, once Eclipse has loaded, create a new project by selecting File ->
New -> Project. A wizard will appear, as shown below. Ensure Java Proj ect is selected then
click Next.

£~ New Project x|
Select FArs
L
Create a Java project ﬁ
+Java W

= Back I [ext = I Einish | Cancel |

In the Project Name text box, enter JFTV B, which stands for “Java From the Very
Beginning” and click Finish. Thiswill create a new project in Eclipse, which will contain our
work.

Java Project —

Create a new lava project, '

Project name: I IFTVE]

Project contents
W Use default

J

Direckory: I di\eclipsetworkspacel IFTVE Browse, ..

< Back | Mext = | Finish I Cancel |

If you are asked if you would like to open the Java perspective, accept this.

Once the project has been created, select File -> Import from the menu bar. An import wizard
will appear.

£ Import il

Select

Irmport resources fram a Zip ot Jar file on the local file systerm &

Select an import source:

ﬁ Existing Project inta Workspace
-cj: External Features

ﬁExtemal Plug-ins and Fragrments
3, File system

%‘ Team Project Set

Xzip file

< Back I Mext = I Eimish Cancel

Select Zip fileand click Next.
Find the exercises JAR file provided with this session and enter the file name in the Zip file

text box. You may click the Browse button to the right of thistext box and search for the file

manually, if required. The lab exercises can be found in the lab\Exercises directory and is
called JFTB.jar.

If the file loaded successfully, entries will appear in the windows below. These show which
parts of the exercise will be imported into Eclipse. Ensure that the top-level folder (whichis
shown with the / character) is ticked, as shown in the diagram below.

Enter JFTVB in the Folder text box and click Finish to import the project.

If you receive any messages asking about whether Eclipse should overwrite certain files, such
asthe .classpath file, then click Yes To All.

£ Import x|

Zip file
-—-‘
Irport the contents of & Zip file From the local file swstem. _]__é
A

Zip File: IC:'l,Documents and SettingsispipesiMy Documents|DemosiSHARE\Dallas j Browse. .. |

ERmEY .classpath
\project

Filter Tvpes... | Select Al Deselect Al

Folder: I IFTVE Browse, .. |

| | Cverarite existing resources without warning

< Back | ext = | Eirish I Cancel |

Once the project has been imported, you will be presented with the Java perpective, as shown
in the diagram below, which shows the project you have just imported. This project can be
expanded, by clicking the “plus’ symbol to the left of the project name.

Also notice the tasks view in the bottom-right of the screen. This reports that two compilation
errors currently exist in the project. These will be resolved as part of the exercises.

#= Java - Eclipse Platform : =10 =]

File Edit Mavigate Search Project Run Window Help

|- HEas-k-[o]|d8de -] 9|%-|«]a--

E ‘Fla. Package Explorer v X x] £ Welcame :E Outline x
By | = Eclipse Platform An outline is not available,
@ -f JFTYE «

Fo X This page will help Familiarize you with the Eclipse Workbench. I—

Ta get started, read the sections below and click an the related links.

{3 Installed Features
Ta find out more about the Features installed in your workbench, choose He
and select the Feature vou are interested in.

{3 Perspectives, views and editors
A window conkains one or more perspectives, A perspective consists of viey
and editors for working with wour resources. —

The shortcut bar at the Far left of the window allows vou to open new persp
between perspectives that are already open. The perspective wou are curn
is shown in the Litle of the window and in the shortcut bar as a pushed-inicc

@ Configuring your perspectives
‘au can move views and editors around the workbench by dragaging their it
also add more wigws ko your current perspective by using 'Window = Show b
Ta reset the perspective to its original state, choose Window = Reset Persp
-

7 Tasks (Filter matched 2 of 2 items) ! = o X
| & | | | Descripkion | Resource | In Folder
(%] kilometers cannat be resolved Marathon.j... JFTVE/Marathon
a The local variable polynomialaty may not have been initiali,.. Polynomial.... JFTYE/Paolynomial
Package Explorer |Hierarchy 4 | 3

If you are not familiar with Eclipse, it is recommended that you use the Java perspective. Ask
the instructor if you are not sure how to enable this perspective.

1) Open the HelloWorldApp.java file which is in the HelloworIdApp folder.

2) The code below should appear (there is an extraline at the top of the code that defines a
package for this code). Complete the program by adding the code required to say “Hello
World!” (as displayed on the overheads and in your notes).

/**
* The HelloWorldApp class implements an application that
* gimply displays "Hello World!" to the standard output.
*

class HelloWorldApp {
// Add the body of your class here

/)
}

3) Save your changes by selecting File -> Save HelloWorldApp.java or by using the key
shortcut CTRL +S. Eclipse will compile the application automatically and will present any
compiler errorsin the Tasks window in the bottom-right corner of the window.

4) The program should now be run. Ensuring that the HelloworldApp.java file is highlighted

in the Package Explorer view, click the arrow on the “Run” icon ® * and select Run As->
2. Java Application. Thiswill start the Java runtime and run the HelloWorldApp application.

The output from this will be displayed in the Console view in the bottom right-hand window.

If you did not receive any error messages and the message “Hello World!” appeared in the
console view then you have successfully completed the first part of this exercise. Y ou are now
able to work through the rest of this lab using the Eclipse environment.

Ex. 2 Marathon

1) Open the M arathon.java file which is in the M arathon folder.

2) You now need to declare some variables to use later on in the program. Find the placein
the source code where it says:

// TO DO:

// Declare two integer variables, miles and yards, and one double
variable,

// kilometres

and immediately underneath insert appropriate declarations for the three variables.

3) The next step isto initialise the miles and yards variables to hold the number of miles and
yards in a marathon respectively. Find the place in the source code where it says:

// TO DO:
// Set miles to 26, and yards to 385

and add some code to set these two variables to the appropriate values.

4) Now we are ready to do the calculation from miles and yards to kilometres. Find the place
in the code where it says:

// TO DO:
// Write an expression to calculate kilometers from miles and yards.
// Save the result of the expression in the variable kilometers.
// One mile is 1.609 kilometers
// There are 1760.0 yards in a mile

and insert some code to calculate the number of kilometresin a marathon. When dealing with
the yards, do you need integer or floating point divison? How does the compiler know which
to use?

5) Save your code using the menu or keyboard shortcut as described in the previous exercise.

7) Run the Marathon program and take a note of the answer (which is displayed in the console
view).

8 (optionad)) If you have time, look at the sample solutions provided for the Marathon
exercise. Three versions are provided. The first program is the solution to the exercise you
have just completed. The second program shows how to improve the code by using constants
for the fixed parameters. What is the Java keyword that introduces a constant?

The third program goes a stage further and formats the answer to three decimal places. Y ou
will not understand all of this program at this stage, but it introduces you to a small part of
Java srich class library and shows how you can import and make use of classes within it.

Java from the very beginning Part I- Sample Solutions
Ex. 1 Hello World

/**

* The HelloWorldApp class implements an application that
* gimply displays "Hello World!" to the standard output.
*

class HelloWorldApp {

public static void main(String[] args) {
System.out .println("Hello World!"); //Display the string.

Ex. 2 Marathon

/**
* Marathon - a simple class to calculate the distance of a marathon in
kilometers

*/
class Marathon ({
/**
* Main method called when we invoke the interpreter
*/
public static void main(String[] args) {
// TO DO:

// Declare two integer variables, miles and yards, and one double
variable,

// kilometers (be careful with the spelling)

int miles;

int yards;

double kilometers;

// TO DO:
// Set miles to 26, and yards to 385
miles = 26;

yards = 385;

// TO DO:

// Write an expression to calculate kilometers from miles and yards.
// Save the result of the expression in the variable kilometers.

// One mile is 1.609 kilometers

// There are 1760.0 yards in a mile

kilometers = 1.609 * (miles + (yards / 1760.0));

// Print the answer
System.out .println ("A marathon is " + kilometers + " kilometers.");

}// end of main method

} // end of marathon class

Improved version using constants:

/**

* Marathon2 - a simple class to calculate the distance of a marathon in
kilometers.

* Uses constants for fixed values.

*/

class Marathon2 ({

/**
* Main method called when we invoke the interpreter
*
/
public static void main(String[] args) {
// Declare constants to use in the calculation:
// final variables cannot be changed once they have been initialised
final int miles = 26;
final int yards = 385;
final double kilometersPerMile = 1.609;
final double yardsPerMile = 1760.0;

double kilometers;

// TO DO:

// Write an expression to calculate kilometers from miles and yards.
// Save the result of the expression in the variable kilometers.

// One mile is 1.609 kilometers

// There are 1760.0 yards in a mile

kilometers = kilometersPerMile * (miles + (yards / yardsPerMile));

// Print the answer
System.out .println ("A marathon is " + kilometers + " kilometers.");

} // end of main method

} // end of marathon class

Improved version with control of output format

/**

* Marathon3 - a simple class to calculate the distance of a marathon in
kilometers

* Uses defined constants, and prints the output to three decimal places.

*/

// import the NumberFormat class into our program since we want to control
the

// appearance of the formatted output

import java.text.NumberFormat;

class Marathon3 ({

/**
* Main method called when we invoke the interpreter
*
/
public static void main(String[] args) {
// Declare constants to use in the calculation:
// final variables cannot be changed once they have been initialised
final int miles = 26;
final int yards = 385;
final double kilometersPerMile = 1.609;
final double yardsPerMile = 1760.0;

double kilometers;

// TO DO:

// Write an expression to calculate kilometers from miles and yards.
// Save the result of the expression in the variable kilometers.

// One mile is 1.609 kilometers

// There are 1760.0 yards in a mile

kilometers = kilometersPerMile * (miles + (yards / yardsPerMile));

// Print the answer, to three decimal places

// Get a number formatter

NumberFormat numberFormatter = NumberFormat.getNumberInstance() ;

// Tell it to use three decimal places

numberFormatter. setMaximumFractionDigits (3) ;

// Format the number

String strKilometers = numberFormatter.format (kilometers) ;

// Print the answer

System.out.println("A marathon is " + strKilometers + " kilometers.");

} // end of main method

} // end of marathon class

